Reported via http://libcpuid.sourceforge.net/bugreport.php
The test in particular has no brand string, which was causing the
misdetection (as is the case with a lot of other models, libcpuid
relies on accurate brand string being programmed by the BIOS in
order to do the detection).
The actual CPU was a Pentium-III based Celeron (SL54Q), but it
was detected as "Pentium III (Coppermine)".
A bit of historical trivia: for the related Tualatin models, if
the BIOS doesn't enter a brand string, there might be NO WAY to
tell a regular P-3 and a P-3 Celeron apart: P-3s have variants
with 256KiB and 512KiB L2 cache, while the Celerons are 256 KiB, so
a 256KiB regular P3 is no different than its corresponding Celeron.
Only the FSB is different, but there's no way to detect this via
CPUID.
For the Coppermines its an easier case: Celerons are always 128KiB,
and Pentia are 256KiB, so I've added this distinction in the tables.
Instead of one big pile of tests in tests_stash.txt, keep each CPU
example raw data/parsed data in a file, ordered in a tree by
manufacturer and microarchitecture. The 64 .test files have been
extracted from tests_stash.txt. The add_test script is changed to
create_test and it doesn't append to test_stash.txt, instead it
spits out data to be saved in a .test file.
run_tests.py is not refactored yet, to be done in a subsequent commit.