1
0
Fork 0
mirror of https://github.com/zeldaret/oot.git synced 2025-01-16 05:26:59 +00:00
oot/src/code/relocation.c

168 lines
8.2 KiB
C
Raw Normal View History

/**
* @file relocation.c
*
* This file contains the routine responsible for runtime relocation of dynamically loadable code segments (overlays),
* see the description of Overlay_Relocate for details.
*
* @see Overlay_Relocate
*/
#include "global.h"
2020-03-17 04:31:30 +00:00
// Extract MIPS register rs from an instruction word
#define MIPS_REG_RS(insn) (((insn) >> 0x15) & 0x1F)
// Extract MIPS register rt from an instruction word
#define MIPS_REG_RT(insn) (((insn) >> 0x10) & 0x1F)
// Extract MIPS jump target from an instruction word
#define MIPS_JUMP_TARGET(insn) (((insn)&0x03FFFFFF) << 2)
/**
* Performs runtime relocation of overlay files, loadable code segments.
*
* Overlays are expected to be loadable anywhere in direct-mapped cached (KSEG0) memory, with some appropriate
* alignment requirements; memory addresses in such code must be updated once loaded in order to execute properly.
* When compiled, overlays are given 'fake' KSEG0 RAM addresses larger than the total possible available main memory
* (>= 0x80800000), such addresses are referred to as Virtual RAM (VRAM) to distinguish them. When loading the overlay
* the relocation table produced at compile time is consulted to determine where and how to update these VRAM addresses
* to correct RAM addresses based on the location the overlay was loaded at, enabling the code to execute at this
* address as if it were compiled to run at this address.
*
* Each relocation is represented by a packed 32-bit value, formatted in the following way:
* - [31:30] 2-bit section id, taking values from the `RelocSectionId` enum.
* - [29:24] 6-bit relocation type describing which relocation operation should be performed. Same as ELF32 MIPS.
* - [23: 0] 24-bit section-relative offset indicating where in the section to apply this relocation.
*
* @param allocatedRamAddress Memory address the binary was loaded at.
* @param ovlRelocs Overlay relocation section containing overlay section layout and runtime relocations.
* @param vramStart Virtual RAM address that the overlay was compiled at.
*/
void Overlay_Relocate(void* allocatedRamAddress, OverlayRelocationSection* ovlRelocs, void* vramStart) {
uintptr_t sections[RELOC_SECTION_MAX];
u32 relocatedValue;
u32 dbg;
u32 relocOffset;
u32 relocData;
uintptr_t unrelocatedAddress;
u32 i;
u32* relocDataP;
//! MIPS ELF relocation does not generally require tracking register values, so at first glance it appears this
//! register tracking was an unnecessary complication. However there is a bug in the IDO compiler that can cause
//! relocations to be emitted in the wrong order under rare circumstances when the compiler attempts to reuse a
//! previous HI16 relocation for a different LO16 relocation as an optimization. This register tracking is likely
//! a workaround to prevent improper matching of unrelated HI16 and LO16 relocations that would otherwise arise
//! due to the incorrect ordering.
u32* luiRefs[32];
u32 luiVals[32];
uintptr_t relocatedAddress;
u32 reloc;
u32* luiInstRef;
uintptr_t allocu32 = (uintptr_t)allocatedRamAddress;
u32* regValP;
u32 isLoNeg;
s32 pad;
relocOffset = 0;
relocatedValue = 0;
unrelocatedAddress = 0;
relocatedAddress = 0;
if (gOverlayLogSeverity >= 3) {
PRINTF("DoRelocation(%08x, %08x, %08x)\n", allocatedRamAddress, ovlRelocs, vramStart);
PRINTF("text=%08x, data=%08x, rodata=%08x, bss=%08x\n", ovlRelocs->textSize, ovlRelocs->dataSize,
ovlRelocs->rodataSize, ovlRelocs->bssSize);
}
sections[RELOC_SECTION_NULL] = 0;
sections[RELOC_SECTION_TEXT] = allocu32;
sections[RELOC_SECTION_DATA] = allocu32 + ovlRelocs->textSize;
sections[RELOC_SECTION_RODATA] = sections[RELOC_SECTION_DATA] + ovlRelocs->dataSize;
for (i = 0; i < ovlRelocs->nRelocations; i++) {
reloc = ovlRelocs->relocations[i];
// This will always resolve to a 32-bit aligned address as each section containing code or pointers must be
// aligned to at least 4 bytes and the MIPS ABI defines the offset of both 16-bit and 32-bit relocations to
// be the start of the 32-bit word containing the target.
relocDataP = (u32*)(sections[RELOC_SECTION(reloc)] + RELOC_OFFSET(reloc));
relocData = *relocDataP;
switch (RELOC_TYPE_MASK(reloc)) {
case R_MIPS_32 << RELOC_TYPE_SHIFT:
// Handles 32-bit address relocation, used for things such as jump tables and pointers in data.
// Just relocate the full address.
// Check address is valid for relocation
if ((*relocDataP & 0x0F000000) == 0) {
relocOffset = *relocDataP - (uintptr_t)vramStart;
relocatedValue = relocOffset + allocu32;
relocatedAddress = relocatedValue;
unrelocatedAddress = relocData;
*relocDataP = relocatedAddress;
}
break;
case R_MIPS_26 << RELOC_TYPE_SHIFT:
// Handles 26-bit address relocation, used for jumps and jals.
// Extract the address from the target field of the J-type MIPS instruction.
// Relocate the address and update the instruction.
unrelocatedAddress = PHYS_TO_K0(MIPS_JUMP_TARGET(*relocDataP));
relocOffset = unrelocatedAddress - (uintptr_t)vramStart;
relocatedValue = (*relocDataP & 0xFC000000) | (((allocu32 + relocOffset) & 0x0FFFFFFF) >> 2);
relocatedAddress = PHYS_TO_K0(MIPS_JUMP_TARGET(relocatedValue));
*relocDataP = relocatedValue;
break;
case R_MIPS_HI16 << RELOC_TYPE_SHIFT:
// Handles relocation for a hi/lo pair, part 1.
// Store the reference to the LUI instruction (hi) using the `rt` register of the instruction.
// This will be updated later in the `R_MIPS_LO16` section.
luiRefs[MIPS_REG_RT(*relocDataP)] = relocDataP;
luiVals[MIPS_REG_RT(*relocDataP)] = *relocDataP;
break;
case R_MIPS_LO16 << RELOC_TYPE_SHIFT:
// Handles relocation for a hi/lo pair, part 2.
// Grab the stored LUI (hi) from the `R_MIPS_HI16` section using the `rs` register of the instruction.
// The full address is calculated, relocated, and then used to update both the LUI and lo instructions.
// If the lo part is negative, add 1 to the LUI value.
// Note: The lo instruction is assumed to have a signed immediate.
luiInstRef = luiRefs[MIPS_REG_RS(*relocDataP)];
regValP = &luiVals[MIPS_REG_RS(*relocDataP)];
// Check address is valid for relocation
if ((((*regValP << 0x10) + (s16)*relocDataP) & 0x0F000000) == 0) {
relocOffset = ((*regValP << 0x10) + (s16)*relocDataP) - (uintptr_t)vramStart;
isLoNeg = ((relocOffset + allocu32) & 0x8000) ? 1 : 0; // adjust for signed immediate
unrelocatedAddress = (*luiInstRef << 0x10) + (s16)relocData;
*luiInstRef =
(*luiInstRef & 0xFFFF0000) | ((((relocOffset + allocu32) >> 0x10) & 0xFFFF) + isLoNeg);
relocatedValue = (*relocDataP & 0xFFFF0000) | ((relocOffset + allocu32) & 0xFFFF);
relocatedAddress = (*luiInstRef << 0x10) + (s16)relocatedValue;
*relocDataP = relocatedValue;
}
break;
}
dbg = 16;
switch (RELOC_TYPE_MASK(reloc)) {
case R_MIPS_32 << RELOC_TYPE_SHIFT:
dbg += 6;
FALLTHROUGH;
case R_MIPS_26 << RELOC_TYPE_SHIFT:
dbg += 10;
FALLTHROUGH;
case R_MIPS_LO16 << RELOC_TYPE_SHIFT:
if (gOverlayLogSeverity >= 3) {
PRINTF("%02d %08x %08x %08x ", dbg, relocDataP, relocatedValue, relocatedAddress);
PRINTF(" %08x %08x %08x %08x\n", (uintptr_t)relocDataP + (uintptr_t)vramStart - allocu32, relocData,
unrelocatedAddress, relocOffset);
}
// Adding a break prevents matching
}
}
}