1
0
Fork 0
mirror of https://github.com/zeldaret/oot.git synced 2025-01-15 04:36:59 +00:00

Synthetic Waves Documentation (#1256)

* Synthetic wave documentation

* Better docs

* harmonicIndex

* More

* typo

* Complete the abi buffer docs

* Small change

* Revert change

* PR suggestions

* Missed one

* PR Feedback

* Better documents

* Well that was a silly copy-pasta mistake

* Typo

* Another comment

* Plural

* Make it more block-like

* Capitalization

* Add comments for gWaveSamples[8]

* Adjust comment

* More PR Suggestions

* PR Suggestions

* missed a phrasing

* PR Suggestions

* Update include/z64audio.h

Co-authored-by: Dragorn421 <Dragorn421@users.noreply.github.com>

Co-authored-by: Dragorn421 <Dragorn421@users.noreply.github.com>
This commit is contained in:
engineer124 2022-06-20 21:55:01 -04:00 committed by GitHub
parent e7e2da86a8
commit 00b98027db
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 168 additions and 98 deletions

View file

@ -294,13 +294,20 @@ typedef short ENVMIX_STATE[40];
_a->words.w1 = (u32)(a2); \ _a->words.w1 = (u32)(a2); \
} }
#define aClearBuffer(pkt, d, c) \ /*
{ \ * Clears DMEM by writing zeros.
Acmd *_a = (Acmd *)pkt; \ *
\ * @param pkt pointer to an Acmd buffer
_a->words.w0 = _SHIFTL(A_CLEARBUFF, 24, 8) | _SHIFTL(d, 0, 24); \ * @param dmem DMEM address to clear
_a->words.w1 = (u32)(c); \ * @param size number of bytes to clear (rounded up to the next multiple of 16)
} */
#define aClearBuffer(pkt, dmem, size) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = _SHIFTL(A_CLEARBUFF, 24, 8) | _SHIFTL(dmem, 0, 24); \
_a->words.w1 = (uintptr_t)(size); \
}
#define aEnvMixer(pkt, dmemi, count, swapLR, x0, x1, x2, x3, m, bits) \ #define aEnvMixer(pkt, dmemi, count, swapLR, x0, x1, x2, x3, m, bits) \
{ \ { \
@ -330,14 +337,21 @@ typedef short ENVMIX_STATE[40];
_a->words.w1 = _SHIFTL(dmemi, 16, 16) | _SHIFTL(dmemo, 0, 16); \ _a->words.w1 = _SHIFTL(dmemi, 16, 16) | _SHIFTL(dmemo, 0, 16); \
} }
#define aLoadBuffer(pkt, s, d, c) \ /*
{ \ * Loads a buffer to DMEM from any physical source address, KSEG0, or KSEG1
Acmd *_a = (Acmd *)pkt; \ *
\ * @param pkt pointer to an Acmd buffer
_a->words.w0 = (_SHIFTL(A_LOADBUFF, 24, 8) | \ * @param addrSrc Any physical source address, KSEG0, or KSEG1
_SHIFTL((c) >> 4, 16, 8) | _SHIFTL(d, 0, 16)); \ * @param dmemDest DMEM destination address
_a->words.w1 = (u32)(s); \ * @param size number of bytes to copy (rounded down to the next multiple of 16)
} */
#define aLoadBuffer(pkt, addrSrc, dmemDest, size) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = (_SHIFTL(A_LOADBUFF, 24, 8) | _SHIFTL((size) >> 4, 16, 8) | _SHIFTL(dmemDest, 0, 16)); \
_a->words.w1 = (uintptr_t)(addrSrc); \
}
#define aMix(pkt, f, g, i, o) \ #define aMix(pkt, f, g, i, o) \
{ \ { \
@ -366,14 +380,21 @@ typedef short ENVMIX_STATE[40];
_a->words.w1 = (u32)(s); \ _a->words.w1 = (u32)(s); \
} }
#define aSaveBuffer(pkt, s, d, c) \ /*
{ \ * Stores a buffer from DMEM to any physical source address, KSEG0, or KSEG1
Acmd *_a = (Acmd *)pkt; \ *
\ * @param pkt pointer to an Acmd buffer
_a->words.w0 = (_SHIFTL(A_SAVEBUFF, 24, 8) | \ * @param dmemSrc DMEM source address
_SHIFTL((c) >> 4, 16, 8) | _SHIFTL(s, 0, 16)); \ * @param addrDest Any physical source address, KSEG0, or KSEG1
_a->words.w1 = (u32)(d); \ * @param size number of bytes to copy (rounded down to the next multiple of 16)
} */
#define aSaveBuffer(pkt, dmemSrc, addrDest, size) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = (_SHIFTL(A_SAVEBUFF, 24, 8) | _SHIFTL((size) >> 4, 16, 8) | _SHIFTL(dmemSrc, 0, 16)); \
_a->words.w1 = (uintptr_t)(addrDest); \
}
#define aSegment(pkt, s, b) \ #define aSegment(pkt, s, b) \
{ \ { \
@ -461,14 +482,21 @@ typedef short ENVMIX_STATE[40];
_a->words.w1 = (u32)(addr); \ _a->words.w1 = (u32)(addr); \
} }
#define aDuplicate(pkt, count, dmemi, dmemo, a4) \ /*
{ \ * Duplicates 128 bytes of data a specified number of times.
Acmd *_a = (Acmd *)pkt; \ *
\ * @param pkt pointer to an Acmd buffer
_a->words.w0 = (_SHIFTL(A_DUPLICATE, 24, 8) | \ * @param numCopies number of times to duplicate 128 bytes from src
_SHIFTL(count, 16, 8) | _SHIFTL(dmemi, 0, 16)); \ * @param dmemSrc DMEM source address
_a->words.w1 = _SHIFTL(dmemo, 16, 16) | _SHIFTL(a4, 0, 16); \ * @param dmemDest DMEM destination address for the duplicates, size 128 * numCopies
} */
#define aDuplicate(pkt, numCopies, dmemSrc, dmemDest) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = (_SHIFTL(A_DUPLICATE, 24, 8) | _SHIFTL(numCopies, 16, 8) | _SHIFTL(dmemSrc, 0, 16)); \
_a->words.w1 = _SHIFTL(dmemDest, 16, 16) | _SHIFTL(0x80, 0, 16); \
}
#define aAddMixer(pkt, count, dmemi, dmemo, a4) \ #define aAddMixer(pkt, count, dmemi, dmemo, a4) \
{ \ { \

View file

@ -18,6 +18,9 @@
#define AIBUF_LEN 0x580 #define AIBUF_LEN 0x580
// Must be the same amount of samples as copied by aDuplicate() (audio microcode)
#define WAVE_SAMPLE_COUNT 64
#define AUDIO_RELOCATED_ADDRESS_START K0BASE #define AUDIO_RELOCATED_ADDRESS_START K0BASE
typedef enum { typedef enum {
@ -493,7 +496,7 @@ typedef struct {
typedef struct { typedef struct {
/* 0x00 */ u8 priority; /* 0x00 */ u8 priority;
/* 0x01 */ u8 waveId; /* 0x01 */ u8 waveId;
/* 0x02 */ u8 sampleCountIndex; /* 0x02 */ u8 harmonicIndex; // the harmonic index for the synthetic wave contained in gWaveSamples (also matches the base 2 logarithm of the harmonic order)
/* 0x03 */ u8 fontId; /* 0x03 */ u8 fontId;
/* 0x04 */ u8 unk_04; /* 0x04 */ u8 unk_04;
/* 0x05 */ u8 stereoHeadsetEffects; /* 0x05 */ u8 stereoHeadsetEffects;
@ -531,7 +534,7 @@ typedef struct {
/* 0x03 */ u8 headsetPanRight; /* 0x03 */ u8 headsetPanRight;
/* 0x04 */ u8 headsetPanLeft; /* 0x04 */ u8 headsetPanLeft;
/* 0x05 */ u8 reverbVol; /* 0x05 */ u8 reverbVol;
/* 0x06 */ u8 unk_06; /* 0x06 */ u8 harmonicIndexCurAndPrev; // bits 3..2 store curHarmonicIndex, bits 1..0 store prevHarmonicIndex
/* 0x07 */ u8 unk_07; /* 0x07 */ u8 unk_07;
/* 0x08 */ u16 targetVolLeft; /* 0x08 */ u16 targetVolLeft;
/* 0x0A */ u16 targetVolRight; /* 0x0A */ u16 targetVolRight;
@ -539,7 +542,7 @@ typedef struct {
/* 0x0E */ u16 unk_0E; /* 0x0E */ u16 unk_0E;
/* 0x10 */ union { /* 0x10 */ union {
TunedSample* tunedSample; TunedSample* tunedSample;
s16* samples; // used for synthetic waves s16* waveSampleAddr; // used for synthetic waves
}; };
/* 0x14 */ s16* filter; /* 0x14 */ s16* filter;
/* 0x18 */ char pad_18[0x8]; /* 0x18 */ char pad_18[0x8];

View file

@ -19,8 +19,8 @@ void Audio_InitNoteSub(Note* note, NoteSubEu* sub, NoteSubAttributes* attrs) {
sub->bitField0 = note->noteSubEu.bitField0; sub->bitField0 = note->noteSubEu.bitField0;
sub->bitField1 = note->noteSubEu.bitField1; sub->bitField1 = note->noteSubEu.bitField1;
sub->samples = note->noteSubEu.samples; sub->waveSampleAddr = note->noteSubEu.waveSampleAddr;
sub->unk_06 = note->noteSubEu.unk_06; sub->harmonicIndexCurAndPrev = note->noteSubEu.harmonicIndexCurAndPrev;
Audio_NoteSetResamplingRate(sub, attrs->frequency); Audio_NoteSetResamplingRate(sub, attrs->frequency);
@ -529,10 +529,18 @@ void Audio_SeqLayerNoteRelease(SequenceLayer* layer) {
Audio_SeqLayerDecayRelease(layer, ADSR_STATE_RELEASE); Audio_SeqLayerDecayRelease(layer, ADSR_STATE_RELEASE);
} }
/**
* Extract the synthetic wave to use from gWaveSamples and update corresponding frequencies
*
* @param note
* @param layer
* @param waveId the index of the type of synthetic wave to use, offset by 128
* @return harmonicIndex, the index of the harmonic for the synthetic wave contained in gWaveSamples
*/
s32 Audio_BuildSyntheticWave(Note* note, SequenceLayer* layer, s32 waveId) { s32 Audio_BuildSyntheticWave(Note* note, SequenceLayer* layer, s32 waveId) {
f32 freqScale; f32 freqScale;
f32 ratio; f32 freqRatio;
u8 sampleCountIndex; u8 harmonicIndex;
if (waveId < 128) { if (waveId < 128) {
waveId = 128; waveId = 128;
@ -542,42 +550,48 @@ s32 Audio_BuildSyntheticWave(Note* note, SequenceLayer* layer, s32 waveId) {
if (layer->portamento.mode != 0 && 0.0f < layer->portamento.extent) { if (layer->portamento.mode != 0 && 0.0f < layer->portamento.extent) {
freqScale *= (layer->portamento.extent + 1.0f); freqScale *= (layer->portamento.extent + 1.0f);
} }
// Map frequency to the harmonic to use from gWaveSamples
if (freqScale < 0.99999f) { if (freqScale < 0.99999f) {
sampleCountIndex = 0; harmonicIndex = 0;
ratio = 1.0465f; freqRatio = 1.0465f;
} else if (freqScale < 1.99999f) { } else if (freqScale < 1.99999f) {
sampleCountIndex = 1; harmonicIndex = 1;
ratio = 0.52325f; freqRatio = 1.0465f / 2;
} else if (freqScale < 3.99999f) { } else if (freqScale < 3.99999f) {
sampleCountIndex = 2; harmonicIndex = 2;
ratio = 0.26263f; freqRatio = 1.0465f / 4 + 1.005E-3;
} else { } else {
sampleCountIndex = 3; harmonicIndex = 3;
ratio = 0.13081f; freqRatio = 1.0465f / 8 - 2.5E-6;
} }
layer->freqScale *= ratio;
// Update results
layer->freqScale *= freqRatio;
note->playbackState.waveId = waveId; note->playbackState.waveId = waveId;
note->playbackState.sampleCountIndex = sampleCountIndex; note->playbackState.harmonicIndex = harmonicIndex;
note->noteSubEu.samples = &gWaveSamples[waveId - 128][sampleCountIndex * 64]; // Save the pointer to the synthethic wave
// waveId index starts at 128, there are WAVE_SAMPLE_COUNT samples to read from
note->noteSubEu.waveSampleAddr = &gWaveSamples[waveId - 128][harmonicIndex * WAVE_SAMPLE_COUNT];
return sampleCountIndex; return harmonicIndex;
} }
void Audio_InitSyntheticWave(Note* note, SequenceLayer* layer) { void Audio_InitSyntheticWave(Note* note, SequenceLayer* layer) {
s32 sampleCountIndex; s32 prevHarmonicIndex;
s32 waveSampleCountIndex; s32 curHarmonicIndex;
s32 waveId = layer->instOrWave; s32 waveId = layer->instOrWave;
if (waveId == 0xFF) { if (waveId == 0xFF) {
waveId = layer->channel->instOrWave; waveId = layer->channel->instOrWave;
} }
sampleCountIndex = note->playbackState.sampleCountIndex; prevHarmonicIndex = note->playbackState.harmonicIndex;
waveSampleCountIndex = Audio_BuildSyntheticWave(note, layer, waveId); curHarmonicIndex = Audio_BuildSyntheticWave(note, layer, waveId);
if (waveSampleCountIndex != sampleCountIndex) { if (curHarmonicIndex != prevHarmonicIndex) {
note->noteSubEu.unk_06 = waveSampleCountIndex * 4 + sampleCountIndex; note->noteSubEu.harmonicIndexCurAndPrev = (curHarmonicIndex << 2) + prevHarmonicIndex;
} }
} }

View file

@ -23,7 +23,7 @@ Acmd* AudioSynth_SaveRingBufferPart(Acmd* cmd, u16 dmem, u16 startPos, s32 lengt
Acmd* AudioSynth_DoOneAudioUpdate(s16* aiBuf, s32 aiBufLen, Acmd* cmd, s32 updateIndex); Acmd* AudioSynth_DoOneAudioUpdate(s16* aiBuf, s32 aiBufLen, Acmd* cmd, s32 updateIndex);
Acmd* AudioSynth_ProcessNote(s32 noteIndex, NoteSubEu* noteSubEu, NoteSynthesisState* synthState, s16* aiBuf, Acmd* AudioSynth_ProcessNote(s32 noteIndex, NoteSubEu* noteSubEu, NoteSynthesisState* synthState, s16* aiBuf,
s32 aiBufLen, Acmd* cmd, s32 updateIndex); s32 aiBufLen, Acmd* cmd, s32 updateIndex);
Acmd* AudioSynth_LoadWaveSamples(Acmd* cmd, NoteSubEu* noteSubEu, NoteSynthesisState* synthState, s32 nSamplesToLoad); Acmd* AudioSynth_LoadWaveSamples(Acmd* cmd, NoteSubEu* noteSubEu, NoteSynthesisState* synthState, s32 numSamplesToLoad);
Acmd* AudioSynth_NoteApplyHeadsetPanEffects(Acmd* cmd, NoteSubEu* noteSubEu, NoteSynthesisState* synthState, s32 bufLen, Acmd* AudioSynth_NoteApplyHeadsetPanEffects(Acmd* cmd, NoteSubEu* noteSubEu, NoteSynthesisState* synthState, s32 bufLen,
s32 flags, s32 side); s32 flags, s32 side);
Acmd* AudioSynth_ProcessEnvelope(Acmd* cmd, NoteSubEu* noteSubEu, NoteSynthesisState* synthState, s32 aiBufLen, Acmd* AudioSynth_ProcessEnvelope(Acmd* cmd, NoteSubEu* noteSubEu, NoteSynthesisState* synthState, s32 aiBufLen,
@ -40,7 +40,12 @@ u16 D_801304B0[] = {
0x7FFF, 0xD001, 0x3FFF, 0xF001, 0x5FFF, 0x9001, 0x7FFF, 0x8001, 0x7FFF, 0xD001, 0x3FFF, 0xF001, 0x5FFF, 0x9001, 0x7FFF, 0x8001,
}; };
u8 D_801304C0[] = { 0x40, 0x20, 0x10, 0x8 }; u8 sNumSamplesPerWavePeriod[] = {
WAVE_SAMPLE_COUNT, // 1st harmonic
WAVE_SAMPLE_COUNT / 2, // 2nd harmonic
WAVE_SAMPLE_COUNT / 4, // 4th harmonic
WAVE_SAMPLE_COUNT / 8, // 8th harmonic
};
void AudioSynth_InitNextRingBuf(s32 chunkLen, s32 updateIndex, s32 reverbIndex) { void AudioSynth_InitNextRingBuf(s32 chunkLen, s32 updateIndex, s32 reverbIndex) {
ReverbRingBufferItem* bufItem; ReverbRingBufferItem* bufItem;
@ -129,7 +134,7 @@ void func_800DB03C(s32 updateIndex) {
subEu2->bitField0.enabled = false; subEu2->bitField0.enabled = false;
} }
subEu->unk_06 = 0; subEu->harmonicIndexCurAndPrev = 0;
} }
} }
@ -326,8 +331,8 @@ Acmd* AudioSynth_MaybeMixRingBuffer1(Acmd* cmd, SynthesisReverb* reverb, s32 upd
void func_800DBB94(void) { void func_800DBB94(void) {
} }
void AudioSynth_ClearBuffer(Acmd* cmd, s32 arg1, s32 arg2) { void AudioSynth_ClearBuffer(Acmd* cmd, s32 dmem, s32 size) {
aClearBuffer(cmd, arg1, arg2); aClearBuffer(cmd, dmem, size);
} }
void func_800DBBBC(void) { void func_800DBBBC(void) {
@ -392,12 +397,12 @@ void AudioSynth_EnvSetup1(Acmd* cmd, s32 arg1, s32 arg2, s32 arg3, s32 arg4) {
void func_800DBD08(void) { void func_800DBD08(void) {
} }
void AudioSynth_LoadBuffer(Acmd* cmd, s32 arg1, s32 arg2, void* arg3) { void AudioSynth_LoadBuffer(Acmd* cmd, s32 dmemDest, s32 size, void* addrSrc) {
aLoadBuffer(cmd, arg3, arg1, arg2); aLoadBuffer(cmd, addrSrc, dmemDest, size);
} }
void AudioSynth_SaveBuffer(Acmd* cmd, s32 arg1, s32 arg2, void* arg3) { void AudioSynth_SaveBuffer(Acmd* cmd, s32 dmemSrc, s32 size, void* addrDest) {
aSaveBuffer(cmd, arg1, arg3, arg2); aSaveBuffer(cmd, dmemSrc, addrDest, size);
} }
void AudioSynth_EnvSetup2(Acmd* cmd, s32 volLeft, s32 volRight) { void AudioSynth_EnvSetup2(Acmd* cmd, s32 volLeft, s32 volRight) {
@ -722,12 +727,12 @@ Acmd* AudioSynth_ProcessNote(s32 noteIndex, NoteSubEu* noteSubEu, NoteSynthesisS
s32 sampleDataStartPad; s32 sampleDataStartPad;
s32 side; s32 side;
s32 resampledTempLen; s32 resampledTempLen;
u16 noteSamplesDmemAddrBeforeResampling; u16 sampleDmemBeforeResampling;
s32 sampleDataOffset; s32 sampleDataOffset;
s32 thing; s32 thing;
s32 s5; s32 s5;
Note* note; Note* note;
u32 nSamplesToLoad; u32 numSamplesToLoad;
u16 unk7; u16 unk7;
u16 unkE; u16 unkE;
s16* filter; s16* filter;
@ -761,7 +766,7 @@ Acmd* AudioSynth_ProcessNote(s32 noteIndex, NoteSubEu* noteSubEu, NoteSynthesisS
resamplingRateFixedPoint = noteSubEu->resamplingRateFixedPoint; resamplingRateFixedPoint = noteSubEu->resamplingRateFixedPoint;
nParts = noteSubEu->bitField1.hasTwoParts + 1; nParts = noteSubEu->bitField1.hasTwoParts + 1;
samplesLenFixedPoint = (resamplingRateFixedPoint * aiBufLen * 2) + synthState->samplePosFrac; samplesLenFixedPoint = (resamplingRateFixedPoint * aiBufLen * 2) + synthState->samplePosFrac;
nSamplesToLoad = samplesLenFixedPoint >> 16; numSamplesToLoad = samplesLenFixedPoint >> 16;
synthState->samplePosFrac = samplesLenFixedPoint & 0xFFFF; synthState->samplePosFrac = samplesLenFixedPoint & 0xFFFF;
// Partially-optimized out no-op ifs required for matching. SM64 decomp // Partially-optimized out no-op ifs required for matching. SM64 decomp
@ -774,9 +779,9 @@ Acmd* AudioSynth_ProcessNote(s32 noteIndex, NoteSubEu* noteSubEu, NoteSynthesisS
synthState->numParts = nParts; synthState->numParts = nParts;
if (noteSubEu->bitField1.isSyntheticWave) { if (noteSubEu->bitField1.isSyntheticWave) {
cmd = AudioSynth_LoadWaveSamples(cmd, noteSubEu, synthState, nSamplesToLoad); cmd = AudioSynth_LoadWaveSamples(cmd, noteSubEu, synthState, numSamplesToLoad);
noteSamplesDmemAddrBeforeResampling = DMEM_UNCOMPRESSED_NOTE + (synthState->samplePosInt * 2); sampleDmemBeforeResampling = DMEM_UNCOMPRESSED_NOTE + (synthState->samplePosInt * (s32)sizeof(s16));
synthState->samplePosInt += nSamplesToLoad; synthState->samplePosInt += numSamplesToLoad;
} else { } else {
sample = noteSubEu->tunedSample->sample; sample = noteSubEu->tunedSample->sample;
loopInfo = sample->loop; loopInfo = sample->loop;
@ -789,11 +794,11 @@ Acmd* AudioSynth_ProcessNote(s32 noteIndex, NoteSubEu* noteSubEu, NoteSynthesisS
s5 = 0; s5 = 0;
if (nParts == 1) { if (nParts == 1) {
samplesLenAdjusted = nSamplesToLoad; samplesLenAdjusted = numSamplesToLoad;
} else if (nSamplesToLoad & 1) { } else if (numSamplesToLoad & 1) {
samplesLenAdjusted = (nSamplesToLoad & ~1) + (curPart * 2); samplesLenAdjusted = (numSamplesToLoad & ~1) + (curPart * 2);
} else { } else {
samplesLenAdjusted = nSamplesToLoad; samplesLenAdjusted = numSamplesToLoad;
} }
if (sample->codec == CODEC_ADPCM || sample->codec == CODEC_SMALL_ADPCM) { if (sample->codec == CODEC_ADPCM || sample->codec == CODEC_SMALL_ADPCM) {
@ -1004,7 +1009,7 @@ Acmd* AudioSynth_ProcessNote(s32 noteIndex, NoteSubEu* noteSubEu, NoteSynthesisS
switch (nParts) { switch (nParts) {
case 1: case 1:
noteSamplesDmemAddrBeforeResampling = DMEM_UNCOMPRESSED_NOTE + skipBytes; sampleDmemBeforeResampling = DMEM_UNCOMPRESSED_NOTE + skipBytes;
break; break;
case 2: case 2:
@ -1013,9 +1018,9 @@ Acmd* AudioSynth_ProcessNote(s32 noteIndex, NoteSubEu* noteSubEu, NoteSynthesisS
AudioSynth_InterL(cmd++, DMEM_UNCOMPRESSED_NOTE + skipBytes, DMEM_TEMP + 0x20, AudioSynth_InterL(cmd++, DMEM_UNCOMPRESSED_NOTE + skipBytes, DMEM_TEMP + 0x20,
ALIGN8(samplesLenAdjusted / 2)); ALIGN8(samplesLenAdjusted / 2));
resampledTempLen = samplesLenAdjusted; resampledTempLen = samplesLenAdjusted;
noteSamplesDmemAddrBeforeResampling = DMEM_TEMP + 0x20; sampleDmemBeforeResampling = DMEM_TEMP + 0x20;
if (finished) { if (finished) {
AudioSynth_ClearBuffer(cmd++, noteSamplesDmemAddrBeforeResampling + resampledTempLen, AudioSynth_ClearBuffer(cmd++, sampleDmemBeforeResampling + resampledTempLen,
samplesLenAdjusted + 0x10); samplesLenAdjusted + 0x10);
} }
break; break;
@ -1038,8 +1043,8 @@ Acmd* AudioSynth_ProcessNote(s32 noteIndex, NoteSubEu* noteSubEu, NoteSynthesisS
flags = A_INIT; flags = A_INIT;
} }
cmd = AudioSynth_FinalResample(cmd, synthState, aiBufLen * 2, resamplingRateFixedPoint, cmd = AudioSynth_FinalResample(cmd, synthState, aiBufLen * 2, resamplingRateFixedPoint, sampleDmemBeforeResampling,
noteSamplesDmemAddrBeforeResampling, flags); flags);
if (bookOffset == 3) { if (bookOffset == 3) {
AudioSynth_UnkCmd19(cmd++, DMEM_TEMP, DMEM_TEMP, aiBufLen * 2, 0); AudioSynth_UnkCmd19(cmd++, DMEM_TEMP, DMEM_TEMP, aiBufLen * 2, 0);
} }
@ -1184,27 +1189,43 @@ Acmd* AudioSynth_ProcessEnvelope(Acmd* cmd, NoteSubEu* noteSubEu, NoteSynthesisS
return cmd; return cmd;
} }
Acmd* AudioSynth_LoadWaveSamples(Acmd* cmd, NoteSubEu* noteSubEu, NoteSynthesisState* synthState, s32 nSamplesToLoad) { Acmd* AudioSynth_LoadWaveSamples(Acmd* cmd, NoteSubEu* noteSubEu, NoteSynthesisState* synthState,
s32 temp_v0; s32 numSamplesToLoad) {
s32 unk6 = noteSubEu->unk_06; s32 numSamplesAvail;
s32 harmonicIndexCurAndPrev = noteSubEu->harmonicIndexCurAndPrev;
s32 samplePosInt = synthState->samplePosInt; s32 samplePosInt = synthState->samplePosInt;
s32 repeats; s32 numDuplicates;
if (noteSubEu->bitField1.bookOffset != 0) { if (noteSubEu->bitField1.bookOffset != 0) {
AudioSynth_LoadBuffer(cmd++, DMEM_UNCOMPRESSED_NOTE, ALIGN16(nSamplesToLoad * 2), gWaveSamples[8]); // Move the noise wave (that reads compiled assembly as samples) from ram to dmem
gWaveSamples[8] += nSamplesToLoad * 2; AudioSynth_LoadBuffer(cmd++, DMEM_UNCOMPRESSED_NOTE, ALIGN16(numSamplesToLoad * sizeof(s16)), gWaveSamples[8]);
// Offset the address for the samples read by gWaveSamples[8] to the next set of samples
gWaveSamples[8] += numSamplesToLoad * sizeof(s16);
return cmd; return cmd;
} else { } else {
aLoadBuffer(cmd++, noteSubEu->samples, DMEM_UNCOMPRESSED_NOTE, 0x80); // Move the synthetic wave from ram to dmem
if (unk6 != 0) { aLoadBuffer(cmd++, noteSubEu->waveSampleAddr, DMEM_UNCOMPRESSED_NOTE, WAVE_SAMPLE_COUNT * sizeof(s16));
samplePosInt = (samplePosInt * D_801304C0[unk6 >> 2]) / D_801304C0[unk6 & 3];
// If the harmonic changes, map the offset in the wave from one harmonic to another for continuity
if (harmonicIndexCurAndPrev != 0) {
samplePosInt = samplePosInt * sNumSamplesPerWavePeriod[harmonicIndexCurAndPrev >> 2] /
sNumSamplesPerWavePeriod[harmonicIndexCurAndPrev & 3];
} }
samplePosInt &= 0x3F;
temp_v0 = 0x40 - samplePosInt; // Offset in the WAVE_SAMPLE_COUNT samples of gWaveSamples to start processing the wave for continuity
if (temp_v0 < nSamplesToLoad) { samplePosInt = (u32)samplePosInt % WAVE_SAMPLE_COUNT;
repeats = ((nSamplesToLoad - temp_v0 + 0x3F) / 0x40); // Number of samples in the initial WAVE_SAMPLE_COUNT samples available to be used to process
if (repeats != 0) { numSamplesAvail = WAVE_SAMPLE_COUNT - samplePosInt;
aDuplicate(cmd++, repeats, DMEM_UNCOMPRESSED_NOTE, DMEM_UNCOMPRESSED_NOTE + 0x80, 0x80);
// Require duplicates if there are more samples to load than available
if (numSamplesToLoad > numSamplesAvail) {
// Duplicate (copy) the WAVE_SAMPLE_COUNT samples as many times as needed to reach numSamplesToLoad.
// (numSamplesToLoad - numSamplesAvail) is the number of samples missing.
// Divide by WAVE_SAMPLE_COUNT, rounding up, to get the amount of duplicates
numDuplicates = ((numSamplesToLoad - numSamplesAvail + (WAVE_SAMPLE_COUNT - 1)) / WAVE_SAMPLE_COUNT);
if (numDuplicates != 0) {
aDuplicate(cmd++, numDuplicates, DMEM_UNCOMPRESSED_NOTE,
DMEM_UNCOMPRESSED_NOTE + (WAVE_SAMPLE_COUNT * sizeof(s16)));
} }
} }
synthState->samplePosInt = samplePosInt; synthState->samplePosInt = samplePosInt;

View file

@ -153,8 +153,6 @@ AudioTask* func_800E5000(void) {
if (gAudioContext.resetStatus == 0) { if (gAudioContext.resetStatus == 0) {
// msg = 0000RREE R = read pos, E = End Pos // msg = 0000RREE R = read pos, E = End Pos
while (osRecvMesg(gAudioContext.cmdProcQueueP, (OSMesg*)&sp4C, OS_MESG_NOBLOCK) != -1) { while (osRecvMesg(gAudioContext.cmdProcQueueP, (OSMesg*)&sp4C, OS_MESG_NOBLOCK) != -1) {
if (1) {}
if (1) {}
if (1) {} if (1) {}
Audio_ProcessCmds(sp4C); Audio_ProcessCmds(sp4C);
j++; j++;
@ -166,9 +164,15 @@ AudioTask* func_800E5000(void) {
gAudioContext.curAbiCmdBuf = gAudioContext.curAbiCmdBuf =
AudioSynth_Update(gAudioContext.curAbiCmdBuf, &abiCmdCnt, currAiBuffer, gAudioContext.aiBufLengths[index]); AudioSynth_Update(gAudioContext.curAbiCmdBuf, &abiCmdCnt, currAiBuffer, gAudioContext.aiBufLengths[index]);
// Update audioRandom to the next random number
gAudioContext.audioRandom = (gAudioContext.audioRandom + gAudioContext.totalTaskCount) * osGetCount(); gAudioContext.audioRandom = (gAudioContext.audioRandom + gAudioContext.totalTaskCount) * osGetCount();
gAudioContext.audioRandom = gAudioContext.audioRandom =
gAudioContext.aiBuffers[index][gAudioContext.totalTaskCount & 0xFF] + gAudioContext.audioRandom; gAudioContext.audioRandom + gAudioContext.aiBuffers[index][gAudioContext.totalTaskCount & 0xFF];
// gWaveSamples[8] interprets compiled assembly code as s16 samples as a way to generate sound with noise.
// Start with the address of func_800E4FE0, and offset it by a random number between 0 - 0xFFF0
// Use the resulting address as the starting address to interpret an array of samples i.e. `s16 samples[]`
gWaveSamples[8] = (s16*)(((u8*)func_800E4FE0) + (gAudioContext.audioRandom & 0xFFF0)); gWaveSamples[8] = (s16*)(((u8*)func_800E4FE0) + (gAudioContext.audioRandom & 0xFFF0));
index = gAudioContext.rspTaskIndex; index = gAudioContext.rspTaskIndex;