1
0
Fork 0
mirror of https://github.com/zeldaret/oot.git synced 2025-07-07 08:24:55 +00:00
* libu64

* logutils.o -> debug.o in spec

* stackcheck.c is part of libu64

* review

* add paragraph about Overlay_Load calling an external function

* audio code*
This commit is contained in:
Dragorn421 2024-11-01 23:47:12 +01:00 committed by GitHub
parent 012c192f00
commit 5b27899b9f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
16 changed files with 97 additions and 29 deletions

View file

@ -1,160 +0,0 @@
#include "global.h"
#include "libc64/os_malloc.h"
typedef void (*arg3_800FC868)(void*);
typedef void (*arg3_800FC8D8)(void*, u32);
typedef void (*arg3_800FC948)(void*, u32, u32, u32, u32, u32, u32, u32, u32);
typedef void (*arg3_800FCA18)(void*, u32);
typedef struct InitFunc {
s32 nextOffset;
void (*func)(void);
} InitFunc;
// .data
void* sInitFuncs = NULL;
#if OOT_DEBUG
char sNew[] = "new";
#else
char sNew[] = "";
#endif
#if !PLATFORM_N64
char D_80134488[0x18] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0x80, 0x00, 0x00,
0xFF, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00,
};
#endif
// possibly some kind of new() function
void* func_800FC800(u32 size) {
DECLARE_INTERRUPT_MASK
void* ptr;
DISABLE_INTERRUPTS();
if (size == 0) {
size = 1;
}
#if OOT_DEBUG
ptr = __osMallocDebug(&gSystemArena, size, sNew, 0);
#else
ptr = __osMalloc(&gSystemArena, size);
#endif
RESTORE_INTERRUPTS();
return ptr;
}
// possibly some kind of delete() function
void func_800FC83C(void* ptr) {
DECLARE_INTERRUPT_MASK
DISABLE_INTERRUPTS();
if (ptr != NULL) {
__osFree(&gSystemArena, ptr);
}
RESTORE_INTERRUPTS();
}
void func_800FC868(void* blk, u32 nBlk, u32 blkSize, arg3_800FC868 arg3) {
DECLARE_INTERRUPT_MASK
u32 pos;
DISABLE_INTERRUPTS();
for (pos = ((u32)blk & ~0); pos < (u32)blk + (nBlk * blkSize); pos = (u32)pos + (blkSize & ~0)) {
arg3((void*)pos);
}
RESTORE_INTERRUPTS();
}
void func_800FC8D8(void* blk, u32 nBlk, s32 blkSize, arg3_800FC8D8 arg3) {
DECLARE_INTERRUPT_MASK
u32 pos;
DISABLE_INTERRUPTS();
for (pos = ((u32)blk & ~0); pos < (u32)blk + (nBlk * blkSize); pos = (u32)pos + (blkSize & ~0)) {
arg3((void*)pos, 2);
}
RESTORE_INTERRUPTS();
}
void* func_800FC948(void* blk, u32 nBlk, u32 blkSize, arg3_800FC948 arg3) {
DECLARE_INTERRUPT_MASK
u32 pos;
DISABLE_INTERRUPTS();
if (blk == NULL) {
blk = func_800FC800(nBlk * blkSize);
}
if (blk != NULL && arg3 != NULL) {
pos = (u32)blk;
while (pos < (u32)blk + (nBlk * blkSize)) {
arg3((void*)pos, 0, 0, 0, 0, 0, 0, 0, 0);
pos = (u32)pos + (blkSize & ~0);
}
}
RESTORE_INTERRUPTS();
return blk;
}
void func_800FCA18(void* blk, u32 nBlk, u32 blkSize, arg3_800FCA18 arg3, s32 arg4) {
DECLARE_INTERRUPT_MASK
u32 pos;
u32 end;
DISABLE_INTERRUPTS();
if (blk != NULL) {
if (arg3 != NULL) {
end = (u32)blk;
pos = (u32)end + (nBlk * blkSize);
while (pos > end) {
pos -= (s32)(blkSize & ~0);
arg3((void*)pos, 2);
}
}
if (arg4 != 0) {
func_800FC83C(blk);
}
}
RESTORE_INTERRUPTS();
}
void func_800FCB34(void) {
InitFunc* initFunc = (InitFunc*)&sInitFuncs;
u32 nextOffset = initFunc->nextOffset;
InitFunc* prev = NULL;
while (nextOffset != 0) {
initFunc = (InitFunc*)((s32)initFunc + nextOffset);
if (initFunc->func != NULL) {
initFunc->func();
}
nextOffset = initFunc->nextOffset;
initFunc->nextOffset = (s32)prev;
prev = initFunc;
}
sInitFuncs = prev;
}
void SystemHeap_Init(void* start, u32 size) {
#if PLATFORM_N64
__osMallocInit(&gSystemArena, start, size);
#else
SystemArena_Init(start, size);
#endif
func_800FCB34();
}

View file

@ -1,418 +0,0 @@
#include "global.h"
u16 sGfxPrintFontTLUT[64] = {
0x0000, 0xFFFF, 0x0000, 0xFFFF, 0x0000, 0xFFFF, 0x0000, 0xFFFF, 0x0000, 0xFFFF, 0x0000, 0xFFFF, 0x0000,
0xFFFF, 0x0000, 0xFFFF, 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0x0000, 0x0000,
0xFFFF, 0xFFFF, 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF,
0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
};
u16 sGfxPrintRainbowTLUT[16] = {
0xF801, 0xFBC1, 0xFFC1, 0x07C1, 0x0421, 0x003F, 0x803F, 0xF83F,
0xF801, 0xFBC1, 0xFFC1, 0x07C1, 0x0421, 0x003F, 0x803F, 0xF83F,
};
u8 sGfxPrintRainbowData[8] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 };
u8 sGfxPrintFontData[(16 * 256) / 2] = {
0x00, 0xDF, 0xFD, 0x00, 0x0A, 0xEE, 0xFF, 0xA0, 0x0D, 0xF2, 0x2D, 0xD0, 0x06, 0x61, 0x1D, 0xC0, 0x01, 0x12, 0x2D,
0xD0, 0x06, 0x71, 0x99, 0x00, 0x01, 0x1E, 0xED, 0x10, 0x07, 0x7E, 0xF7, 0x00, 0x01, 0x56, 0x29, 0x90, 0x05, 0x58,
0x97, 0x60, 0x0D, 0xD2, 0x29, 0x90, 0x05, 0x59, 0x97, 0x70, 0x04, 0xDF, 0xFD, 0x40, 0x02, 0x6E, 0xF7, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0xBF, 0xFB, 0x00, 0x0E, 0xFF, 0xFF, 0xC0, 0x0B, 0xF0, 0x0F, 0xB0,
0x0F, 0xF0, 0x03, 0x30, 0x0F, 0xF0, 0x0F, 0xF0, 0x0F, 0xF0, 0x02, 0x20, 0x0C, 0xFB, 0xBF, 0x60, 0x0F, 0xFC, 0xCE,
0x20, 0x0D, 0xD4, 0x4F, 0xF0, 0x0F, 0xF0, 0x02, 0x20, 0x0F, 0xF0, 0x0F, 0xF0, 0x0F, 0xF0, 0x03, 0x30, 0x0C, 0xFB,
0xBF, 0x40, 0x0E, 0xF7, 0x77, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xDF, 0xFD, 0x00, 0x0A,
0xEE, 0xFF, 0xA0, 0x0D, 0xF2, 0x2D, 0xD0, 0x06, 0x61, 0x1D, 0xC0, 0x01, 0x12, 0x2D, 0xD0, 0x06, 0x71, 0x99, 0x00,
0x01, 0x1E, 0xED, 0x10, 0x07, 0x7E, 0xF7, 0x00, 0x01, 0x56, 0x29, 0x90, 0x05, 0x58, 0x97, 0x60, 0x0D, 0xD2, 0x29,
0x90, 0x05, 0x59, 0x97, 0x70, 0x04, 0xDF, 0xFD, 0x40, 0x02, 0x6E, 0xF7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x08, 0xBF, 0xFB, 0x00, 0x00, 0x0D, 0xE0, 0x00, 0x0B, 0xF0, 0x0F, 0xB0, 0x00, 0x5D, 0xE6, 0x00, 0x0F,
0xF0, 0x0F, 0xF0, 0x05, 0x5C, 0xC6, 0x60, 0x0C, 0xFB, 0xBF, 0x60, 0x77, 0x3F, 0xF3, 0x77, 0x0D, 0xD4, 0x4F, 0xF0,
0xBB, 0x3F, 0xF3, 0xBB, 0x0F, 0xF0, 0x0F, 0xF0, 0x09, 0x9C, 0xCA, 0xA0, 0x0C, 0xFB, 0xBF, 0x40, 0x00, 0x9D, 0xEA,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0D, 0xE0, 0x00, 0x04, 0xC2, 0x2C, 0x40, 0x02, 0x8D, 0x50, 0x20, 0x0C, 0xCA,
0xAC, 0xC0, 0x21, 0xF9, 0x17, 0x10, 0x04, 0xC2, 0x2C, 0x40, 0x12, 0x49, 0x34, 0x00, 0x00, 0x82, 0x08, 0x00, 0x01,
0x97, 0x51, 0x10, 0x08, 0x8A, 0x88, 0x80, 0x04, 0x61, 0x52, 0x41, 0x00, 0x80, 0x08, 0x00, 0x43, 0x11, 0x75, 0x30,
0x00, 0xA2, 0x08, 0x00, 0x60, 0x05, 0x56, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x40, 0x00, 0x40, 0x00, 0x22, 0x11,
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x0F, 0xB0, 0x00, 0x00, 0x00, 0x08, 0x80, 0x04, 0x0D, 0xA4, 0x00, 0x00, 0x00,
0x88, 0x00, 0x08, 0xCD, 0xE8, 0x80, 0x02, 0x2A, 0xA2, 0x20, 0x08, 0xCD, 0xE8, 0x80, 0x02, 0xAA, 0x22, 0x20, 0x04,
0x0D, 0xA4, 0x00, 0x0C, 0xD1, 0x00, 0x00, 0x00, 0x0F, 0xB0, 0x00, 0x8C, 0x51, 0x00, 0x00, 0x00, 0x22, 0x11, 0x00,
0x81, 0x10, 0x00, 0x00, 0x00, 0xDF, 0xFD, 0x00, 0x0A, 0xEE, 0xFF, 0xA0, 0x0D, 0xF2, 0x2D, 0xD0, 0x06, 0x61, 0x1D,
0xC0, 0x01, 0x12, 0x2D, 0xD0, 0x06, 0x71, 0x99, 0x00, 0x01, 0x1E, 0xED, 0x10, 0x07, 0x7E, 0xF7, 0x00, 0x01, 0x56,
0x29, 0x90, 0x05, 0x58, 0x97, 0x60, 0x0D, 0xD2, 0x29, 0x90, 0x05, 0x59, 0x97, 0x70, 0x04, 0xDF, 0xFD, 0x40, 0x02,
0x6E, 0xF7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x33, 0x33, 0x00, 0x04, 0x48, 0x99, 0x80,
0x03, 0x3C, 0xC3, 0x30, 0x00, 0xCD, 0x10, 0x88, 0x03, 0x3C, 0xC3, 0x30, 0x02, 0xBF, 0x62, 0xA8, 0x00, 0x33, 0x33,
0x20, 0x01, 0x10, 0x4C, 0x80, 0x01, 0x10, 0x03, 0x30, 0x00, 0x15, 0xC8, 0x00, 0x03, 0x3C, 0xC3, 0x30, 0x02, 0x67,
0x32, 0x20, 0x00, 0x3F, 0xF3, 0x00, 0x04, 0x40, 0x99, 0x00, 0x00, 0x88, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05,
0xDF, 0xFD, 0x10, 0x07, 0xFF, 0xFF, 0x60, 0x1C, 0xE0, 0x0E, 0xC1, 0x0F, 0xF0, 0x09, 0x90, 0x1E, 0xE1, 0x16, 0x61,
0x0F, 0xF0, 0x01, 0x10, 0x1E, 0xF4, 0x56, 0x21, 0x0F, 0xF6, 0x67, 0x10, 0x1E, 0xF2, 0x36, 0x61, 0x0F, 0xF0, 0x89,
0x90, 0x1E, 0xF1, 0x0F, 0xE1, 0x0F, 0xF0, 0x09, 0x90, 0x16, 0xEC, 0xCE, 0x21, 0x07, 0xFB, 0xBB, 0x20, 0x01, 0x11,
0x11, 0x10, 0x00, 0x00, 0x00, 0x00, 0x09, 0xB6, 0x6F, 0xD0, 0x27, 0xD8, 0x8E, 0x60, 0x09, 0x92, 0xED, 0x10, 0x2F,
0xF0, 0x2E, 0xE0, 0x09, 0x9A, 0xE5, 0x10, 0x2F, 0xF6, 0x2E, 0xE0, 0x09, 0x9B, 0x75, 0x10, 0x2F, 0xD6, 0x4E, 0xE0,
0x0D, 0xDA, 0xE5, 0x10, 0x2F, 0xD0, 0x4E, 0xE0, 0x0D, 0xD2, 0xED, 0x10, 0x2F, 0xD0, 0x0E, 0xE0, 0x09, 0xF6, 0x6F,
0x90, 0x27, 0xD9, 0x9F, 0x70, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0xFF, 0xFF, 0x00, 0x8F, 0x71,
0x1F, 0xF0, 0x2F, 0xD0, 0x0F, 0xF0, 0x8F, 0x71, 0x1F, 0xF0, 0x2F, 0xD0, 0x07, 0x70, 0x8E, 0x61, 0x1E, 0xE0, 0x27,
0xDD, 0xDF, 0x60, 0x8E, 0x69, 0x1E, 0xE0, 0x27, 0x76, 0x4A, 0xA0, 0x8E, 0xE9, 0x9E, 0xE0, 0x2F, 0xD0, 0x6E, 0x80,
0x8A, 0xE7, 0xFE, 0xA0, 0x07, 0xFA, 0x8E, 0x60, 0x88, 0x27, 0x7A, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x07, 0x7C, 0xCF, 0xF0, 0x13, 0x26, 0x60, 0x11, 0x07, 0x7C, 0xCF, 0xF0, 0x03, 0x76, 0x65, 0x10, 0x02, 0x39,
0xD7, 0x20, 0x04, 0x53, 0x35, 0x40, 0x00, 0x2F, 0xF2, 0x00, 0x01, 0x13, 0x31, 0x10, 0x00, 0x5F, 0xB1, 0x00, 0x00,
0x03, 0x30, 0x00, 0x05, 0x5E, 0xE5, 0x50, 0x01, 0x13, 0x31, 0x10, 0x05, 0x5E, 0xED, 0xD0, 0x02, 0x23, 0x30, 0x00,
0x00, 0x08, 0x88, 0x80, 0x8A, 0xAB, 0xB8, 0x88, 0x00, 0x00, 0x11, 0x00, 0x00, 0x04, 0x45, 0x10, 0x04, 0x62, 0x33,
0x20, 0x00, 0x44, 0x01, 0x10, 0x04, 0xC8, 0x9A, 0xA0, 0x00, 0xEE, 0xAB, 0x10, 0x0C, 0xE6, 0x67, 0x20, 0x0E, 0xF5,
0x5F, 0xB0, 0x0E, 0xE0, 0x06, 0x60, 0x0B, 0xF6, 0x2B, 0x90, 0x0E, 0xE0, 0x06, 0x60, 0x03, 0xFC, 0x89, 0x90, 0x04,
0xEE, 0xEE, 0xA0, 0x00, 0x77, 0x3B, 0xB0, 0x00, 0x00, 0x00, 0x00, 0x08, 0x88, 0x88, 0x00, 0x09, 0x90, 0x00, 0x00,
0x00, 0x11, 0x10, 0x00, 0x09, 0x92, 0x24, 0x40, 0x00, 0x01, 0x10, 0x00, 0x09, 0x90, 0x88, 0x00, 0x26, 0xEF, 0xDE,
0x20, 0x09, 0x9B, 0xB5, 0x40, 0x2E, 0xC3, 0x3C, 0xE2, 0x0D, 0x9A, 0x25, 0x50, 0x2E, 0xC3, 0x3C, 0xE2, 0x0D, 0xDA,
0xA5, 0x50, 0x2E, 0xC3, 0x3C, 0xE2, 0x09, 0xD6, 0xED, 0x10, 0x26, 0xCB, 0xBC, 0x62, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x10, 0x00,
0x05, 0xFB, 0xFF, 0xE0, 0x8E, 0x61, 0x16, 0xE8, 0x0F, 0xF4, 0x03, 0x30, 0x8F, 0x71, 0x17, 0xF8, 0x07, 0xFC, 0x8B,
0x30, 0x8E, 0x69, 0x96, 0xE8, 0x05, 0x73, 0x3B, 0xA0, 0x8A, 0x6D, 0xD6, 0xA8, 0x0D, 0xD8, 0x8A, 0x20, 0x08, 0xA7,
0x79, 0xB2, 0x01, 0x10, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x8A, 0x01, 0x10, 0x00, 0x00,
0x00, 0x08, 0x00, 0x80, 0xA1, 0x10, 0x00, 0x07, 0x74, 0x4F, 0x70, 0x80, 0xA9, 0x90, 0x00, 0x02, 0x31, 0xDF, 0x20,
0x84, 0xE6, 0x00, 0x04, 0x00, 0x27, 0xDA, 0x20, 0xC8, 0xAA, 0x4C, 0x40, 0x00, 0x57, 0x3B, 0x20, 0x00, 0xA1, 0x18,
0x00, 0x05, 0x54, 0x6F, 0x50, 0x00, 0xA9, 0x98, 0x00, 0x02, 0x22, 0x20, 0x80, 0x02, 0x00, 0x18, 0x88, 0x00, 0x04,
0x44, 0x40, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x44, 0x40, 0x0C, 0x44, 0x44, 0x00, 0x00, 0x04, 0x40, 0x00, 0x88,
0xC0, 0x00, 0x00, 0x00, 0x0C, 0xC0, 0x00, 0x0C, 0x46, 0xA4, 0x40, 0x00, 0x0C, 0xC0, 0x00, 0x08, 0x8E, 0xE0, 0x00,
0x02, 0x08, 0x80, 0x00, 0x80, 0xD0, 0x88, 0x00, 0x28, 0xA8, 0x80, 0x00, 0x88, 0xCD, 0x4C, 0x40, 0x0A, 0x88, 0x80,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0xE0, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x08, 0x88, 0x00, 0x80, 0x01, 0x06, 0x10, 0x00, 0x56, 0xE7, 0x50, 0x80, 0x02, 0x1F, 0xF1, 0x00, 0x38,
0x8C, 0xB8, 0x00, 0x0B, 0xF6, 0x0B, 0x00, 0x94, 0xC0, 0x28, 0x00, 0x06, 0x07, 0x6A, 0x00, 0xCB, 0xA6, 0xC8, 0x00,
0x00, 0x47, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0A, 0x80, 0x00, 0x00, 0x39, 0x14,
0x20, 0x02, 0x22, 0x24, 0x00, 0x08, 0xAE, 0xA8, 0x60, 0x04, 0x28, 0x99, 0x70, 0x07, 0x75, 0xD1, 0x04, 0x0F, 0xB3,
0x33, 0xD0, 0x00, 0xAE, 0xBE, 0xA4, 0x25, 0x15, 0x20, 0xA0, 0x02, 0x61, 0x0C, 0x02, 0x20, 0x42, 0x08, 0x20, 0x2C,
0x30, 0x14, 0x02, 0x02, 0x28, 0x82, 0x00, 0x03, 0xAC, 0xC1, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x08, 0x12, 0x00, 0x08, 0x00, 0x28, 0x00, 0x0A, 0xCF, 0xEE, 0x20, 0x0B, 0x62, 0x2E, 0x20, 0x02, 0x10, 0x82,
0x40, 0x01, 0x44, 0xE4, 0x40, 0x03, 0x00, 0x0E, 0x00, 0x8D, 0xEA, 0xAC, 0x00, 0x02, 0x10, 0x0A, 0x00, 0x01, 0xE0,
0x24, 0x00, 0x0C, 0x21, 0x02, 0x00, 0x09, 0x42, 0x21, 0x00, 0x00, 0xCC, 0xF4, 0x40, 0x02, 0xBF, 0xD4, 0x40, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x44, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x44, 0x40,
0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x40, 0x00, 0x0C, 0xCC, 0xC4, 0x40, 0x00, 0x0C, 0xC0, 0x00, 0x00, 0x02, 0xA0,
0x40, 0x00, 0x0C, 0xC0, 0x00, 0x04, 0xCE, 0x64, 0x40, 0x02, 0x08, 0x80, 0x00, 0x00, 0x90, 0x00, 0x40, 0x28, 0xA8,
0x80, 0x00, 0x08, 0x01, 0x04, 0x00, 0x0A, 0x88, 0x80, 0x00, 0x04, 0x44, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x00, 0x00, 0x00, 0x54, 0x44, 0x00,
0xEE, 0xFE, 0xE0, 0x00, 0x09, 0x3B, 0x3F, 0x00, 0x21, 0xD8, 0x20, 0x00, 0x00, 0x54, 0x4F, 0x00, 0x18, 0x58, 0x20,
0x00, 0x00, 0x01, 0x86, 0x00, 0xC6, 0x7E, 0x40, 0x00, 0x00, 0xEF, 0x66, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x80, 0x04, 0x00, 0x00, 0xC0, 0x20, 0x00, 0xAA, 0xAA, 0xEA, 0x20, 0xEF, 0xFF, 0xFF, 0x00, 0x80,
0x44, 0x19, 0x30, 0x00, 0x49, 0x24, 0x00, 0xC5, 0x35, 0x1B, 0x10, 0x00, 0x4B, 0x24, 0x00, 0x01, 0x35, 0xA0, 0x00,
0x8C, 0xA9, 0xAC, 0x80, 0x00, 0x2C, 0x00, 0x00, 0x04, 0x21, 0xA4, 0x00, 0x2A, 0x84, 0x00, 0x00, 0x73, 0x11, 0xF1,
0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0B, 0x11, 0x19, 0x00, 0x00, 0x40, 0x00, 0x00, 0x8F, 0xEE,
0xEF, 0xE0, 0x0B, 0x76, 0x66, 0xD0, 0x1A, 0x00, 0x0B, 0x40, 0x4C, 0x40, 0x02, 0xD0, 0x28, 0x00, 0x1A, 0x40, 0x01,
0xD0, 0x2C, 0x10, 0x00, 0x00, 0x38, 0x40, 0x00, 0x40, 0x28, 0x10, 0x00, 0x01, 0xA0, 0x40, 0x00, 0x42, 0x83, 0x00,
0x05, 0xFE, 0x44, 0x40, 0x03, 0xFD, 0x54, 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x99, 0x9B,
0x00, 0x00, 0x10, 0x20, 0x00, 0x07, 0x26, 0x21, 0x40, 0x2A, 0xFE, 0xEE, 0xA0, 0x8D, 0x8C, 0xA9, 0xC0, 0x00, 0x10,
0x20, 0x80, 0x32, 0x33, 0xB3, 0x60, 0x00, 0x19, 0x28, 0x00, 0x00, 0x00, 0xA1, 0x40, 0x00, 0x10, 0xB1, 0x00, 0x00,
0x08, 0x34, 0x00, 0x00, 0x1A, 0x08, 0x00, 0x05, 0xF7, 0x40, 0x00, 0x8E, 0xF4, 0x44, 0xC0, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x08, 0x14, 0x02, 0x80, 0x00, 0x04, 0x00, 0x00, 0x1D, 0x11, 0xDB, 0x00, 0xDD, 0xFD, 0xDD,
0xD0, 0x0C, 0x88, 0x07, 0x00, 0x02, 0x06, 0x00, 0x90, 0x48, 0x00, 0x34, 0x00, 0x2C, 0x04, 0x2C, 0x10, 0x48, 0x11,
0x21, 0x40, 0x04, 0x84, 0x83, 0x40, 0x59, 0x03, 0x00, 0x50, 0x40, 0x0C, 0x10, 0x60, 0x42, 0xA9, 0x88, 0xC0, 0x40,
0x15, 0x80, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x02, 0x00, 0x40, 0x08, 0x98, 0x88, 0x80,
0x08, 0xF9, 0x98, 0xC0, 0x06, 0x77, 0x75, 0x50, 0x02, 0x0C, 0x05, 0x00, 0x19, 0x98, 0xA8, 0xD0, 0x0B, 0x99, 0xCA,
0x80, 0x04, 0x54, 0x65, 0xC0, 0x20, 0x08, 0x50, 0x20, 0x00, 0x10, 0x20, 0xC0, 0x31, 0x1C, 0x04, 0x20, 0x00, 0x01,
0x28, 0x40, 0x26, 0x63, 0xBB, 0xE0, 0x26, 0xEF, 0xE6, 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x02, 0x01, 0x00, 0xC8, 0xC0, 0x00, 0x00, 0x0F, 0x8A, 0x89, 0x80, 0xC3, 0xF3, 0x11, 0x30, 0x0F, 0x02, 0x01, 0x80,
0xC9, 0xC0, 0x00, 0x30, 0x0F, 0x02, 0x05, 0xA0, 0x00, 0x00, 0x00, 0x30, 0x0E, 0x02, 0x05, 0xA0, 0x00, 0x00, 0x00,
0x30, 0x0E, 0x02, 0x52, 0x80, 0x00, 0x00, 0x03, 0x00, 0x2C, 0xDF, 0xA8, 0x80, 0x02, 0x33, 0x30, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x88, 0x00, 0x01, 0x02, 0x80, 0x00, 0x03, 0xFF, 0xF7, 0x00, 0x0F,
0x26, 0xE4, 0x72, 0xCC, 0x38, 0x00, 0x40, 0x0C, 0x38, 0x99, 0x00, 0x03, 0x0A, 0x31, 0x50, 0x0C, 0xB1, 0x82, 0x80,
0x03, 0x28, 0x06, 0x00, 0x87, 0x88, 0x2A, 0xA0, 0x01, 0x05, 0xC2, 0x00, 0x85, 0x82, 0xC2, 0x80, 0x10, 0x00, 0x39,
0x10, 0x08, 0x51, 0xBF, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x04, 0x00, 0x48, 0x9D,
0xCC, 0x40, 0xC9, 0xE6, 0x7F, 0x40, 0x40, 0x00, 0x94, 0x00, 0x5B, 0x21, 0x0C, 0xB0, 0x48, 0xAE, 0xCC, 0x40, 0xE1,
0x30, 0x0C, 0x30, 0x43, 0x01, 0xA4, 0x00, 0xE1, 0x24, 0x5D, 0x30, 0x78, 0x8C, 0xD6, 0x10, 0xF1, 0x60, 0x94, 0x70,
0xD0, 0x40, 0x9C, 0x70, 0x0B, 0x8C, 0x53, 0x00, 0x0C, 0x9D, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x01, 0x39, 0x50, 0x00, 0x00, 0x88, 0xF0, 0x00, 0x2E, 0xAF, 0xC6, 0x00, 0x03, 0x01, 0x77, 0x60, 0x04, 0xF0,
0x41, 0x60, 0x03, 0x92, 0xF8, 0x12, 0x0F, 0xBD, 0x91, 0x40, 0x1B, 0x28, 0x60, 0x92, 0x70, 0xF4, 0x01, 0xF0, 0x0A,
0xD4, 0x65, 0x82, 0x53, 0xE0, 0x01, 0xE0, 0x04, 0x10, 0x68, 0x60, 0x04, 0x2A, 0xBE, 0x00, 0x00, 0x4F, 0x80, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x3A, 0xEE, 0x00, 0xC8, 0xC0, 0x00, 0x00, 0x0D, 0x84, 0xA5,
0x00, 0xC1, 0xC2, 0x11, 0x00, 0x45, 0x0E, 0x27, 0x00, 0xD9, 0xC3, 0x00, 0x10, 0x07, 0xF8, 0x8D, 0x20, 0x01, 0x30,
0x00, 0x10, 0xAC, 0x02, 0x25, 0xA0, 0x01, 0x22, 0x00, 0x10, 0x44, 0x20, 0x16, 0xA0, 0x13, 0x02, 0x00, 0x30, 0x04,
0x1B, 0xAA, 0x40, 0x21, 0x00, 0x23, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
#if !PLATFORM_N64
// Can be used to set GFXP_FLAG_ENLARGE by default
static u8 sDefaultSpecialFlags;
#endif
void GfxPrint_Setup(GfxPrint* this) {
s32 width;
s32 height;
s32 i;
s32 pal;
s32 cm;
s32 masks;
s32 maskt;
s32 shift;
s32 line;
s32 tmem = 0;
s32 fmt = G_IM_FMT_CI;
gDPPipeSync(this->dList++);
gDPSetOtherMode(this->dList++,
G_AD_DISABLE | G_CD_DISABLE | G_CK_NONE | G_TC_FILT | G_TF_BILERP | G_TT_IA16 | G_TL_TILE |
G_TD_CLAMP | G_TP_NONE | G_CYC_1CYCLE | G_PM_NPRIMITIVE,
G_AC_NONE | G_ZS_PRIM | G_RM_XLU_SURF | G_RM_XLU_SURF2);
gDPSetCombineMode(this->dList++, G_CC_DECALRGBA, G_CC_DECALRGBA);
width = 16;
height = 256;
cm = G_TX_NOMIRROR | G_TX_WRAP;
masks = G_TX_NOMASK;
maskt = G_TX_NOMASK;
shift = G_TX_NOLOD;
gDPLoadMultiBlock_4b(this->dList++, sGfxPrintFontData, 0, G_TX_RENDERTILE, G_IM_FMT_CI, width, height, 0, cm, cm,
masks, maskt, shift, shift);
gDPLoadTLUT(this->dList++, 64, 0x100, sGfxPrintFontTLUT);
for (i = 1; i < 4; i++) {
gDPSetTile(this->dList++, G_IM_FMT_CI, G_IM_SIZ_4b, 1, 0, i * 2, i, cm, maskt, shift, cm, masks, shift);
gDPSetTileSize(this->dList++, i * 2, 0 << 2, 0 << 2, (width - 1) << 2, (height - 1) << 2);
}
gDPSetColor(this->dList++, G_SETPRIMCOLOR, this->color.rgba);
width = 2;
height = 8;
cm = G_TX_NOMIRROR | G_TX_WRAP;
masks = 1;
maskt = 3;
shift = G_TX_NOLOD;
pal = 4;
line = 1;
gDPLoadMultiTile_4b(this->dList++, sGfxPrintRainbowData, 0, 1, G_IM_FMT_CI, width, height, 0, 0, width - 1,
height - 1, pal, cm, cm, masks, maskt, shift, shift);
gDPLoadTLUT(this->dList++, 16, 0x140, sGfxPrintRainbowTLUT);
for (i = 1; i < 4; i++) {
gDPSetTile(this->dList++, fmt, G_IM_SIZ_4b, line, tmem, i * 2 + 1, pal, cm, maskt, shift, cm, masks, shift);
gDPSetTileSize(this->dList++, i * 2 + 1, 0 << 2, 0 << 2, (width - 1) << 2, (height - 1) << 2);
}
}
void GfxPrint_SetColor(GfxPrint* this, u32 r, u32 g, u32 b, u32 a) {
this->color.r = r;
this->color.g = g;
this->color.b = b;
this->color.a = a;
gDPPipeSync(this->dList++);
gDPSetColor(this->dList++, G_SETPRIMCOLOR, this->color.rgba);
}
void GfxPrint_SetPosPx(GfxPrint* this, s32 x, s32 y) {
this->posX = this->baseX + (x << 2);
this->posY = this->baseY + (y << 2);
}
void GfxPrint_SetPos(GfxPrint* this, s32 x, s32 y) {
GfxPrint_SetPosPx(this, x * GFX_CHAR_X_SPACING, y * GFX_CHAR_Y_SPACING);
}
void GfxPrint_SetBasePosPx(GfxPrint* this, s32 x, s32 y) {
this->baseX = x << 2;
this->baseY = y << 2;
}
void GfxPrint_PrintCharImpl(GfxPrint* this, u8 c) {
u32 tile = (c & 0xFF) * 2;
if (this->flags & GFXP_FLAG_UPDATE) {
this->flags &= ~GFXP_FLAG_UPDATE;
gDPPipeSync(this->dList++);
if (this->flags & GFXP_FLAG_RAINBOW) {
gDPSetTextureLUT(this->dList++, G_TT_RGBA16);
gDPSetCycleType(this->dList++, G_CYC_2CYCLE);
gDPSetRenderMode(this->dList++, G_RM_PASS, G_RM_XLU_SURF2);
gDPSetCombineMode(this->dList++, G_CC_INTERFERENCE, G_CC_PASS2);
} else {
gDPSetTextureLUT(this->dList++, G_TT_IA16);
gDPSetCycleType(this->dList++, G_CYC_1CYCLE);
gDPSetRenderMode(this->dList++, G_RM_XLU_SURF, G_RM_XLU_SURF2);
gDPSetCombineMode(this->dList++, G_CC_MODULATEIDECALA_PRIM, G_CC_MODULATEIDECALA_PRIM);
}
}
if (this->flags & GFXP_FLAG_SHADOW) {
gDPSetColor(this->dList++, G_SETPRIMCOLOR, 0);
#if PLATFORM_N64
gSPTextureRectangle(this->dList++, this->posX + 4, this->posY + 4, this->posX + 4 + 32, this->posY + 4 + 32,
tile, (u16)(c & 4) * 64, (u16)(c >> 3) * 256, 1 << 10, 1 << 10);
#else
if (this->flags & GFXP_FLAG_ENLARGE) {
gSPTextureRectangle(this->dList++, (this->posX + 4) << 1, (this->posY + 4) << 1, (this->posX + 4 + 32) << 1,
(this->posY + 4 + 32) << 1, tile, (u16)(c & 4) * 64, (u16)(c >> 3) * 256, 1 << 9,
1 << 9);
} else {
gSPTextureRectangle(this->dList++, this->posX + 4, this->posY + 4, this->posX + 4 + 32, this->posY + 4 + 32,
tile, (u16)(c & 4) * 64, (u16)(c >> 3) * 256, 1 << 10, 1 << 10);
}
#endif
gDPSetColor(this->dList++, G_SETPRIMCOLOR, this->color.rgba);
}
#if PLATFORM_N64
gSPTextureRectangle(this->dList++, this->posX, this->posY, this->posX + 32, this->posY + 32, tile,
(u16)(c & 4) * 64, (u16)(c >> 3) * 256, 1 << 10, 1 << 10);
#else
if (this->flags & GFXP_FLAG_ENLARGE) {
gSPTextureRectangle(this->dList++, this->posX << 1, this->posY << 1, (this->posX + 32) << 1,
(this->posY + 32) << 1, tile, (u16)(c & 4) * 64, (u16)(c >> 3) * 256, 1 << 9, 1 << 9);
} else {
gSPTextureRectangle(this->dList++, this->posX, this->posY, this->posX + 32, this->posY + 32, tile,
(u16)(c & 4) * 64, (u16)(c >> 3) * 256, 1 << 10, 1 << 10);
}
#endif
this->posX += GFX_CHAR_X_SPACING << 2;
}
void GfxPrint_PrintChar(GfxPrint* this, u8 c) {
#if PLATFORM_N64
#define CHAR_PARAM c
#else
#define CHAR_PARAM charParam
u8 charParam = c;
#endif
if (c == ' ') {
this->posX += GFX_CHAR_X_SPACING << 2;
} else if (c > ' ' && c < 0x7F) {
GfxPrint_PrintCharImpl(this, c);
} else if (c >= 0xA0 && c < 0xE0) {
if (this->flags & GFXP_FLAG_HIRAGANA) {
if (c < 0xC0) {
CHAR_PARAM = c - 0x20;
} else {
CHAR_PARAM = c + 0x20;
}
}
GfxPrint_PrintCharImpl(this, CHAR_PARAM);
} else {
switch (c) {
case '\0':
break;
case '\n':
this->posY += GFX_CHAR_Y_SPACING << 2;
FALLTHROUGH;
case '\r':
this->posX = this->baseX;
break;
case '\t':
do {
GfxPrint_PrintCharImpl(this, ' ');
} while ((this->posX - this->baseX) % 256);
break;
case GFXP_HIRAGANA_CHAR:
this->flags |= GFXP_FLAG_HIRAGANA;
break;
case GFXP_KATAKANA_CHAR:
this->flags &= ~GFXP_FLAG_HIRAGANA;
break;
case GFXP_RAINBOW_ON_CHAR:
this->flags |= GFXP_FLAG_RAINBOW;
this->flags |= GFXP_FLAG_UPDATE;
break;
case GFXP_RAINBOW_OFF_CHAR:
this->flags &= ~GFXP_FLAG_RAINBOW;
this->flags |= GFXP_FLAG_UPDATE;
break;
case GFXP_UNUSED_CHAR:
default:
break;
}
}
}
void GfxPrint_PrintStringWithSize(GfxPrint* this, const void* buffer, u32 charSize, u32 charCount) {
const char* str = (const char*)buffer;
u32 count = charSize * charCount;
while (count != 0) {
GfxPrint_PrintChar(this, *(str++));
count--;
}
}
void GfxPrint_PrintString(GfxPrint* this, const char* str) {
while (*str != '\0') {
GfxPrint_PrintChar(this, *(str++));
}
}
void* GfxPrint_Callback(void* arg, const char* str, size_t size) {
GfxPrint* this = arg;
GfxPrint_PrintStringWithSize(this, str, sizeof(char), size);
return this;
}
void GfxPrint_Init(GfxPrint* this) {
this->flags &= ~GFXP_FLAG_OPEN;
this->callback = GfxPrint_Callback;
this->dList = NULL;
this->posX = 0;
this->posY = 0;
this->baseX = 0;
this->baseY = 0;
this->color.rgba = 0;
this->flags &= ~GFXP_FLAG_HIRAGANA;
this->flags &= ~GFXP_FLAG_RAINBOW;
this->flags |= GFXP_FLAG_SHADOW;
this->flags |= GFXP_FLAG_UPDATE;
#if !PLATFORM_N64
if (sDefaultSpecialFlags & GFXP_FLAG_ENLARGE) {
this->flags |= GFXP_FLAG_ENLARGE;
} else {
this->flags &= ~GFXP_FLAG_ENLARGE;
}
#endif
}
void GfxPrint_Destroy(GfxPrint* this) {
}
void GfxPrint_Open(GfxPrint* this, Gfx* dList) {
if (!(this->flags & GFXP_FLAG_OPEN)) {
this->flags |= GFXP_FLAG_OPEN;
this->dList = dList;
GfxPrint_Setup(this);
} else {
#if PLATFORM_N64 || OOT_DEBUG
osSyncPrintf(T("gfxprint_open:2重オープンです\n", "gfxprint_open: Double open\n"));
#endif
}
}
Gfx* GfxPrint_Close(GfxPrint* this) {
Gfx* ret;
this->flags &= ~GFXP_FLAG_OPEN;
#if !PLATFORM_N64
gDPPipeSync(this->dList++);
#endif
ret = this->dList;
this->dList = NULL;
return ret;
}
s32 GfxPrint_VPrintf(GfxPrint* this, const char* fmt, va_list args) {
return PrintUtils_VPrintf(&this->callback, fmt, args);
}
s32 GfxPrint_Printf(GfxPrint* this, const char* fmt, ...) {
s32 ret;
va_list args;
va_start(args, fmt);
ret = GfxPrint_VPrintf(this, fmt, args);
va_end(args);
return ret;
}

View file

@ -1,74 +0,0 @@
#include "global.h"
size_t Overlay_Load(uintptr_t vromStart, uintptr_t vromEnd, void* vramStart, void* vramEnd, void* allocatedRamAddr) {
s32 pad[3];
uintptr_t end;
OverlayRelocationSection* ovlRelocs;
u32 relocSectionOffset = 0;
s32 size = vromEnd - vromStart;
if (gOverlayLogSeverity >= 3) {
PRINTF(
T("\nダイナミックリンクファンクションのロードを開始します\n", "\nStart loading dynamic link function\n"));
}
size = vromEnd - vromStart;
end = (uintptr_t)allocatedRamAddr + size;
if (gOverlayLogSeverity >= 3) {
PRINTF(T("TEXT,DATA,RODATA+relを転送します(%08x-%08x)\n",
"DMA transfer of TEXT, DATA, RODATA + rel (%08x-%08x)\n"),
allocatedRamAddr, end);
}
// DMA the overlay, wait until transfer completes
DmaMgr_RequestSync(allocatedRamAddr, vromStart, size);
// The overlay file is expected to contain a 32-bit offset from the end of the file to the start of the
// relocation section.
relocSectionOffset = ((s32*)end)[-1];
ovlRelocs = (OverlayRelocationSection*)(end - relocSectionOffset);
if (gOverlayLogSeverity >= 3) {
PRINTF("TEXT(%08x), DATA(%08x), RODATA(%08x), BSS(%08x)\n", ovlRelocs->textSize, ovlRelocs->dataSize,
ovlRelocs->rodataSize, ovlRelocs->bssSize);
}
if (gOverlayLogSeverity >= 3) {
PRINTF(T("リロケーションします\n", "Relocate\n"));
}
// Relocate pointers in overlay code and data
Overlay_Relocate(allocatedRamAddr, ovlRelocs, vramStart);
// Clear bss if present, bss is located immediately following the relocations
if (ovlRelocs->bssSize != 0) {
if (gOverlayLogSeverity >= 3) {
PRINTF(T("BSS領域をクリアします(%08x-%08x)\n", "Clear BSS area (%08x-%08x)\n"), end,
end + ovlRelocs->bssSize);
}
bzero((void*)end, ovlRelocs->bssSize);
}
size = (uintptr_t)(ovlRelocs->relocations + ovlRelocs->nRelocations) - (uintptr_t)ovlRelocs;
if (gOverlayLogSeverity >= 3) {
PRINTF(T("REL領域をクリアします(%08x-%08x)\n", "Clear REL area (%08x-%08x)\n"), ovlRelocs,
(uintptr_t)ovlRelocs + size);
}
// Clear relocations, this space remains allocated and goes unused
bzero(ovlRelocs, size);
// Manually flush caches
size = (uintptr_t)vramEnd - (uintptr_t)vramStart;
osWritebackDCache(allocatedRamAddr, size);
osInvalICache(allocatedRamAddr, size);
if (gOverlayLogSeverity >= 3) {
PRINTF(
T("ダイナミックリンクファンクションのロードを終了します\n\n", "Finish loading dynamic link function\n\n"));
}
return size;
}

View file

@ -1,17 +0,0 @@
#include "global.h"
void* Overlay_AllocateAndLoad(uintptr_t vromStart, uintptr_t vromEnd, void* vramStart, void* vramEnd) {
void* allocatedRamAddr = SYSTEM_ARENA_MALLOC_R((intptr_t)vramEnd - (intptr_t)vramStart, "../loadfragment2.c", 31);
if (gOverlayLogSeverity >= 3) {
PRINTF("OVL:SPEC(%08x-%08x) REAL(%08x-%08x) OFFSET(%08x)\n", vramStart, vramEnd, allocatedRamAddr,
((uintptr_t)vramEnd - (uintptr_t)vramStart) + (uintptr_t)allocatedRamAddr,
(uintptr_t)vramStart - (uintptr_t)allocatedRamAddr);
}
if (allocatedRamAddr != NULL) {
Overlay_Load(vromStart, vromEnd, vramStart, vramEnd, allocatedRamAddr);
}
return allocatedRamAddr;
}

View file

@ -1,209 +0,0 @@
/**
* @file loadfragment2_n64.c
*
* This file contains the routine responsible for runtime relocation of dynamically loadable code segments (overlays),
* see the description of Overlay_Relocate for details.
*
* @see Overlay_Relocate
*/
#include "global.h"
s32 gOverlayLogSeverity = 2;
// Extract MIPS register rs from an instruction word
#define MIPS_REG_RS(insn) (((insn) >> 0x15) & 0x1F)
// Extract MIPS register rt from an instruction word
#define MIPS_REG_RT(insn) (((insn) >> 0x10) & 0x1F)
// Extract MIPS jump target from an instruction word
#define MIPS_JUMP_TARGET(insn) (((insn)&0x03FFFFFF) << 2)
/**
* Performs runtime relocation of overlay files, loadable code segments.
*
* Overlays are expected to be loadable anywhere in direct-mapped cached (KSEG0) memory, with some appropriate
* alignment requirements; memory addresses in such code must be updated once loaded to execute properly.
* When compiled, overlays are given 'fake' KSEG0 RAM addresses larger than the total possible available main memory
* (>= 0x80800000), such addresses are referred to as Virtual RAM (VRAM) to distinguish them. When loading the overlay,
* the relocation table produced at compile time is consulted to determine where and how to update these VRAM addresses
* to correct RAM addresses based on the location the overlay was loaded at, enabling the code to execute at this
* address as if it were compiled to run at this address.
*
* Each relocation is represented by a packed 32-bit value, formatted in the following way:
* - [31:30] 2-bit section id, taking values from the `RelocSectionId` enum.
* - [29:24] 6-bit relocation type describing which relocation operation should be performed. Same as ELF32 MIPS.
* - [23: 0] 24-bit section-relative offset indicating where in the section to apply this relocation.
*
* @param allocatedRamAddress Memory address the binary was loaded at.
* @param ovlRelocs Overlay relocation section containing overlay section layout and runtime relocations.
* @param vramStart Virtual RAM address that the overlay was compiled at.
*/
void Overlay_Relocate(void* allocatedRamAddr, OverlayRelocationSection* ovlRelocs, void* vramStart) {
u32 sections[RELOC_SECTION_MAX];
u32* relocDataP;
u32 reloc;
uintptr_t relocatedAddress;
u32 i;
u32* luiInstRef;
u32 isLoNeg;
u32* regValP;
//! MIPS ELF relocation does not generally require tracking register values, so at first glance it appears this
//! register tracking was an unnecessary complication. However there is a bug in the IDO compiler that can cause
//! relocations to be emitted in the wrong order under rare circumstances when the compiler attempts to reuse a
//! previous HI16 relocation for a different LO16 relocation as an optimization. This register tracking is likely
//! a workaround to prevent improper matching of unrelated HI16 and LO16 relocations that would otherwise arise
//! due to the incorrect ordering.
u32* luiRefs[32];
u32 luiVals[32];
uintptr_t allocu32 = (uintptr_t)allocatedRamAddr;
uintptr_t vramu32 = (uintptr_t)vramStart;
if (gOverlayLogSeverity >= 3) {
osSyncPrintf("DoRelocation(%08x, %08x, %08x)\n", allocatedRamAddr, ovlRelocs, vramStart);
}
sections[RELOC_SECTION_NULL] = 0;
sections[RELOC_SECTION_TEXT] = allocu32;
sections[RELOC_SECTION_DATA] = allocu32 + ovlRelocs->textSize;
sections[RELOC_SECTION_RODATA] = sections[RELOC_SECTION_DATA] + ovlRelocs->dataSize;
for (i = 0; i < ovlRelocs->nRelocations; i++) {
// This will always resolve to a 32-bit aligned address as each section
// containing code or pointers must be aligned to at least 4 bytes and the
// MIPS ABI defines the offset of both 16-bit and 32-bit relocations to be
// the start of the 32-bit word containing the target.
reloc = ovlRelocs->relocations[i];
relocDataP = (u32*)(sections[RELOC_SECTION(reloc)] + RELOC_OFFSET(reloc));
switch (RELOC_TYPE_MASK(reloc)) {
case R_MIPS_32 << RELOC_TYPE_SHIFT:
// Handles 32-bit address relocation, used for things such as jump tables and pointers in data.
// Just relocate the full address
// Check address is valid for relocation
if ((*relocDataP & 0x0F000000) == 0) {
*relocDataP = *relocDataP - vramu32 + allocu32;
} else if (gOverlayLogSeverity >= 3) {
osSyncPrintf(T("セグメントポインタ32です %08x\n", "Segment pointer 32 %08x\n"),
*relocDataP - vramu32);
}
break;
case R_MIPS_26 << RELOC_TYPE_SHIFT:
// Handles 26-bit address relocation, used for jumps and jals.
// Extract the address from the target field of the J-type MIPS instruction.
// Relocate the address and update the instruction.
if (1) {
*relocDataP =
(*relocDataP & 0xFC000000) |
(((PHYS_TO_K0(MIPS_JUMP_TARGET(*relocDataP)) - vramu32 + allocu32) & 0x0FFFFFFF) >> 2);
} else if (gOverlayLogSeverity >= 3) {
osSyncPrintf(T("セグメントポインタ26です %08x\n", "Segment pointer 26 %08x\n"),
PHYS_TO_K0(MIPS_JUMP_TARGET(*relocDataP)) - vramu32);
}
break;
case R_MIPS_HI16 << RELOC_TYPE_SHIFT:
// Handles relocation for a hi/lo pair, part 1.
// Store the reference to the LUI instruction (hi) using the `rt` register of the instruction.
// This will be updated later in the `R_MIPS_LO16` section.
luiRefs[(*relocDataP >> 0x10) & 0x1F] = relocDataP;
luiVals[(*relocDataP >> 0x10) & 0x1F] = *relocDataP;
break;
case R_MIPS_LO16 << RELOC_TYPE_SHIFT:
// Handles relocation for a hi/lo pair, part 2.
// Grab the stored LUI (hi) from the `R_MIPS_HI16` section using the `rs` register of the instruction.
// The full address is calculated, relocated, and then used to update both the LUI and lo instructions.
// If the lo part is negative, add 1 to the LUI value.
// Note: The lo instruction is assumed to have a signed immediate.
luiInstRef = luiRefs[(*relocDataP >> 0x15) & 0x1F];
regValP = &luiVals[(*relocDataP >> 0x15) & 0x1F];
// Check address is valid for relocation
if ((((*luiInstRef << 0x10) + (s16)*relocDataP) & 0x0F000000) == 0) {
relocatedAddress = ((*regValP << 0x10) + (s16)*relocDataP) - vramu32 + allocu32;
isLoNeg = (relocatedAddress & 0x8000) ? 1 : 0;
*luiInstRef = (*luiInstRef & 0xFFFF0000) | (((relocatedAddress >> 0x10) & 0xFFFF) + isLoNeg);
*relocDataP = (*relocDataP & 0xFFFF0000) | (relocatedAddress & 0xFFFF);
} else if (gOverlayLogSeverity >= 3) {
osSyncPrintf(T("セグメントポインタ16です %08x %08x %08x\n", "Segment pointer 16 %08x %08x %08x\n"),
((*luiInstRef << 0x10) + (s16)*relocDataP) - vramu32, *luiInstRef, *relocDataP);
}
break;
}
}
}
size_t Overlay_Load(uintptr_t vromStart, uintptr_t vromEnd, void* vramStart, void* vramEnd, void* allocatedRamAddr) {
s32 pad[2];
s32 size = vromEnd - vromStart;
uintptr_t end;
OverlayRelocationSection* ovlRelocs;
if (gOverlayLogSeverity >= 3) {
osSyncPrintf(
T("\nダイナミックリンクファンクションのロードを開始します\n", "\nStart loading dynamic link function\n"));
}
size = vromEnd - vromStart;
end = (uintptr_t)allocatedRamAddr + size;
if (gOverlayLogSeverity >= 3) {
osSyncPrintf(T("TEXT,DATA,RODATA+relを転送します(%08x-%08x)\n",
"DMA transfer TEXT, DATA, RODATA+rel (%08x-%08x)\n"),
allocatedRamAddr, end);
}
DmaMgr_RequestSync(allocatedRamAddr, vromStart, size);
// The overlay file is expected to contain a 32-bit offset from the end of the file to the start of the
// relocation section.
ovlRelocs = (OverlayRelocationSection*)(end - ((s32*)end)[-1]);
if (gOverlayLogSeverity >= 3) {
osSyncPrintf("TEXT(%08x), DATA(%08x), RODATA(%08x), BSS(%08x)\n", ovlRelocs->textSize, ovlRelocs->dataSize,
ovlRelocs->rodataSize, (s32)ovlRelocs->bssSize);
}
if (gOverlayLogSeverity >= 3) {
osSyncPrintf(T("リロケーションします\n", "I will relocate\n"));
}
Overlay_Relocate(allocatedRamAddr, ovlRelocs, vramStart);
// Casts suggest bssSize struct variable was an s32, but needs to be a u32 for the GC versions
if ((s32)ovlRelocs->bssSize != 0) {
if (gOverlayLogSeverity >= 3) {
osSyncPrintf(T("BSS領域をクリアします(%08x-%08x)\n", "Clear BSS area (%08x-%08x)\n"), end,
end + (s32)ovlRelocs->bssSize);
}
bzero((void*)end, (s32)ovlRelocs->bssSize);
}
size = (uintptr_t)vramEnd - (uintptr_t)vramStart;
osWritebackDCache(allocatedRamAddr, size);
osInvalICache(allocatedRamAddr, size);
if (gOverlayLogSeverity >= 3) {
osSyncPrintf(T("ダイナミックリンクファンクションのロードを終了します\n\n",
"Finish loading the dynamic link function\n\n"));
}
return size;
}
void* Overlay_AllocateAndLoad(uintptr_t vromStart, uintptr_t vromEnd, void* vramStart, void* vramEnd) {
void* allocatedRamAddr = SYSTEM_ARENA_MALLOC_R((intptr_t)vramEnd - (intptr_t)vramStart, "../loadfragment2.c", 31);
if (allocatedRamAddr != NULL) {
Overlay_Load(vromStart, vromEnd, vramStart, vramEnd, allocatedRamAddr);
}
return allocatedRamAddr;
}

View file

@ -1,3 +0,0 @@
#include "global.h"
s32 gOverlayLogSeverity = 2;

View file

@ -1,24 +0,0 @@
#include "global.h"
void MtxConv_F2L(Mtx* m1, MtxF* m2) {
s32 i;
s32 j;
LOG_UTILS_CHECK_NULL_POINTER("m1", m1, "../mtxuty-cvt.c", 31);
LOG_UTILS_CHECK_NULL_POINTER("m2", m2, "../mtxuty-cvt.c", 32);
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
s32 value = (m2->mf[i][j] * 0x10000);
m1->intPart[i][j] = value >> 16;
m1->fracPart[i][j] = value;
}
}
}
void MtxConv_L2F(MtxF* m1, Mtx* m2) {
LOG_UTILS_CHECK_NULL_POINTER("m1", m1, "../mtxuty-cvt.c", 55);
LOG_UTILS_CHECK_NULL_POINTER("m2", m2, "../mtxuty-cvt.c", 56);
guMtxL2F(m1->mf, m2);
}

View file

@ -1,34 +0,0 @@
#include "global.h"
s32 PadSetup_Init(OSMesgQueue* mq, u8* outMask, OSContStatus* status) {
s32 ret;
s32 i;
*outMask = 0xFF;
ret = osContInit(mq, outMask, status);
if (ret != 0) {
return ret;
}
if (*outMask == 0xFF) {
if (osContStartQuery(mq) != 0) {
return 1;
}
osRecvMesg(mq, NULL, OS_MESG_BLOCK);
osContGetQuery(status);
*outMask = 0;
for (i = 0; i < MAXCONTROLLERS; i++) {
switch (status[i].errno) {
case 0:
if (status[i].type == CONT_TYPE_NORMAL) {
*outMask |= 1 << i;
}
break;
default:
break;
}
}
}
return 0;
}

View file

@ -1,106 +0,0 @@
#include "global.h"
void PadUtils_Init(Input* input) {
bzero(input, sizeof(Input));
}
void func_800FCB70(void) {
}
void PadUtils_ResetPressRel(Input* input) {
input->press.button = 0;
#if PLATFORM_N64
input->press.stick_x = 0;
input->press.stick_y = 0;
#endif
input->rel.button = 0;
}
u32 PadUtils_CheckCurExact(Input* input, u16 value) {
return value == input->cur.button;
}
u32 PadUtils_CheckCur(Input* input, u16 key) {
return key == (input->cur.button & key);
}
u32 PadUtils_CheckPressed(Input* input, u16 key) {
return key == (input->press.button & key);
}
u32 PadUtils_CheckReleased(Input* input, u16 key) {
return key == (input->rel.button & key);
}
u16 PadUtils_GetCurButton(Input* input) {
return input->cur.button;
}
u16 PadUtils_GetPressButton(Input* input) {
return input->press.button;
}
s8 PadUtils_GetCurX(Input* input) {
return input->cur.stick_x;
}
s8 PadUtils_GetCurY(Input* input) {
return input->cur.stick_y;
}
void PadUtils_SetRelXY(Input* input, s32 x, s32 y) {
input->rel.stick_x = x;
input->rel.stick_y = y;
}
s8 PadUtils_GetRelXImpl(Input* input) {
return input->rel.stick_x;
}
s8 PadUtils_GetRelYImpl(Input* input) {
return input->rel.stick_y;
}
s8 PadUtils_GetRelX(Input* input) {
return PadUtils_GetRelXImpl(input);
}
s8 PadUtils_GetRelY(Input* input) {
return PadUtils_GetRelYImpl(input);
}
#if PLATFORM_N64
s8 PadUtils_GetPressX(Input* input) {
return input->press.stick_x;
}
s8 PadUtils_GetPressY(Input* input) {
return input->press.stick_y;
}
#endif
void PadUtils_UpdateRelXY(Input* input) {
s32 curX = PadUtils_GetCurX(input);
s32 curY = PadUtils_GetCurY(input);
s32 relX;
s32 relY;
if (curX > 7) {
relX = (curX < 0x43) ? curX - 7 : 0x43 - 7;
} else if (curX < -7) {
relX = (curX > -0x43) ? curX + 7 : -0x43 + 7;
} else {
relX = 0;
}
if (curY > 7) {
relY = (curY < 0x43) ? curY - 7 : 0x43 - 7;
} else if (curY < -7) {
relY = (curY > -0x43) ? curY + 7 : -0x43 + 7;
} else {
relY = 0;
}
PadUtils_SetRelXY(input, relX, relY);
}

View file

@ -1,63 +0,0 @@
#include "global.h"
#if PLATFORM_N64 || OOT_DEBUG
#define RCP_UTILS_PRINTF osSyncPrintf
#elif IDO_PRINTF_WORKAROUND
#define RCP_UTILS_PRINTF(args) (void)0
#else
#define RCP_UTILS_PRINTF(format, ...) (void)0
#endif
#define printSpStatus(x, name) \
if (x & SP_STATUS_##name) \
RCP_UTILS_PRINTF(#name " ")
#define printDpStatus(x, name) \
if (x & DPC_STATUS_##name) \
RCP_UTILS_PRINTF(#name " ")
void RcpUtils_PrintRegisterStatus(void) {
u32 spStatus = __osSpGetStatus();
u32 dpStatus = osDpGetStatus();
RCP_UTILS_PRINTF("osSpGetStatus=%08x: ", spStatus);
printSpStatus(spStatus, HALT);
printSpStatus(spStatus, BROKE);
printSpStatus(spStatus, DMA_BUSY);
printSpStatus(spStatus, DMA_FULL);
printSpStatus(spStatus, IO_FULL);
printSpStatus(spStatus, SSTEP);
printSpStatus(spStatus, INTR_BREAK);
printSpStatus(spStatus, YIELD);
printSpStatus(spStatus, YIELDED);
printSpStatus(spStatus, TASKDONE);
printSpStatus(spStatus, SIG3);
printSpStatus(spStatus, SIG4);
printSpStatus(spStatus, SIG5);
printSpStatus(spStatus, SIG6);
printSpStatus(spStatus, SIG7);
RCP_UTILS_PRINTF("\n");
RCP_UTILS_PRINTF("osDpGetStatus=%08x:", dpStatus);
printDpStatus(dpStatus, XBUS_DMEM_DMA);
printDpStatus(dpStatus, FREEZE);
printDpStatus(dpStatus, FLUSH);
printDpStatus(dpStatus, START_GCLK);
printDpStatus(dpStatus, TMEM_BUSY);
printDpStatus(dpStatus, PIPE_BUSY);
printDpStatus(dpStatus, CMD_BUSY);
printDpStatus(dpStatus, CBUF_READY);
printDpStatus(dpStatus, DMA_BUSY);
printDpStatus(dpStatus, END_VALID);
printDpStatus(dpStatus, START_VALID);
RCP_UTILS_PRINTF("\n");
}
void RcpUtils_Reset(void) {
RcpUtils_PrintRegisterStatus();
// Flush the RDP pipeline and freeze clock counter
osDpSetStatus(DPC_SET_FREEZE | DPC_SET_FLUSH);
// Halt the RSP, disable interrupt on break and set "task done" signal
__osSpSetStatus(SP_SET_HALT | SP_SET_TASKDONE | SP_CLR_INTR_BREAK);
RcpUtils_PrintRegisterStatus();
}

View file

@ -1,163 +0,0 @@
/**
* @file relocation.c
*
* This file contains the routine responsible for runtime relocation of dynamically loadable code segments (overlays),
* see the description of Overlay_Relocate for details.
*
* @see Overlay_Relocate
*/
#include "global.h"
// Extract MIPS register rs from an instruction word
#define MIPS_REG_RS(insn) (((insn) >> 0x15) & 0x1F)
// Extract MIPS register rt from an instruction word
#define MIPS_REG_RT(insn) (((insn) >> 0x10) & 0x1F)
// Extract MIPS jump target from an instruction word
#define MIPS_JUMP_TARGET(insn) (((insn)&0x03FFFFFF) << 2)
/**
* Performs runtime relocation of overlay files, loadable code segments.
*
* Overlays are expected to be loadable anywhere in direct-mapped cached (KSEG0) memory, with some appropriate
* alignment requirements; memory addresses in such code must be updated once loaded in order to execute properly.
* When compiled, overlays are given 'fake' KSEG0 RAM addresses larger than the total possible available main memory
* (>= 0x80800000), such addresses are referred to as Virtual RAM (VRAM) to distinguish them. When loading the overlay
* the relocation table produced at compile time is consulted to determine where and how to update these VRAM addresses
* to correct RAM addresses based on the location the overlay was loaded at, enabling the code to execute at this
* address as if it were compiled to run at this address.
*
* Each relocation is represented by a packed 32-bit value, formatted in the following way:
* - [31:30] 2-bit section id, taking values from the `RelocSectionId` enum.
* - [29:24] 6-bit relocation type describing which relocation operation should be performed. Same as ELF32 MIPS.
* - [23: 0] 24-bit section-relative offset indicating where in the section to apply this relocation.
*
* @param allocatedRamAddr Memory address the binary was loaded at.
* @param ovlRelocs Overlay relocation section containing overlay section layout and runtime relocations.
* @param vramStart Virtual RAM address that the overlay was compiled at.
*/
void Overlay_Relocate(void* allocatedRamAddr, OverlayRelocationSection* ovlRelocs, void* vramStart) {
uintptr_t sections[RELOC_SECTION_MAX];
u32* relocDataP;
u32 reloc;
u32 relocData;
u32 isLoNeg;
uintptr_t allocu32 = (uintptr_t)allocatedRamAddr;
u32 i;
u32* regValP;
//! MIPS ELF relocation does not generally require tracking register values, so at first glance it appears this
//! register tracking was an unnecessary complication. However there is a bug in the IDO compiler that can cause
//! relocations to be emitted in the wrong order under rare circumstances when the compiler attempts to reuse a
//! previous HI16 relocation for a different LO16 relocation as an optimization. This register tracking is likely
//! a workaround to prevent improper matching of unrelated HI16 and LO16 relocations that would otherwise arise
//! due to the incorrect ordering.
u32* luiRefs[32];
u32 luiVals[32];
u32* luiInstRef;
u32 dbg;
s32 relocOffset = 0;
u32 relocatedValue = 0;
uintptr_t unrelocatedAddress = 0;
uintptr_t relocatedAddress = 0;
uintptr_t vramu32 = (uintptr_t)vramStart;
if (gOverlayLogSeverity >= 3) {
PRINTF("DoRelocation(%08x, %08x, %08x)\n", allocatedRamAddr, ovlRelocs, vramStart);
PRINTF("text=%08x, data=%08x, rodata=%08x, bss=%08x\n", ovlRelocs->textSize, ovlRelocs->dataSize,
ovlRelocs->rodataSize, ovlRelocs->bssSize);
}
sections[RELOC_SECTION_NULL] = 0;
sections[RELOC_SECTION_TEXT] = allocu32;
sections[RELOC_SECTION_DATA] = allocu32 + ovlRelocs->textSize;
sections[RELOC_SECTION_RODATA] = sections[RELOC_SECTION_DATA] + ovlRelocs->dataSize;
for (i = 0; i < ovlRelocs->nRelocations; i++) {
reloc = ovlRelocs->relocations[i];
// This will always resolve to a 32-bit aligned address as each section containing code or pointers must be
// aligned to at least 4 bytes and the MIPS ABI defines the offset of both 16-bit and 32-bit relocations to
// be the start of the 32-bit word containing the target.
relocDataP = (u32*)(sections[RELOC_SECTION(reloc)] + RELOC_OFFSET(reloc));
relocData = *relocDataP;
switch (RELOC_TYPE_MASK(reloc)) {
case R_MIPS_32 << RELOC_TYPE_SHIFT:
// Handles 32-bit address relocation, used for things such as jump tables and pointers in data.
// Just relocate the full address.
// Check address is valid for relocation
if ((*relocDataP & 0x0F000000) == 0) {
relocOffset = *relocDataP - vramu32;
relocatedValue = relocOffset + allocu32;
relocatedAddress = relocatedValue;
unrelocatedAddress = relocData;
*relocDataP = relocatedAddress;
}
break;
case R_MIPS_26 << RELOC_TYPE_SHIFT:
// Handles 26-bit address relocation, used for jumps and jals.
// Extract the address from the target field of the J-type MIPS instruction.
// Relocate the address and update the instruction.
if (1) {
relocOffset = PHYS_TO_K0(MIPS_JUMP_TARGET(*relocDataP)) - vramu32;
unrelocatedAddress = PHYS_TO_K0(MIPS_JUMP_TARGET(*relocDataP));
relocatedValue = (*relocDataP & 0xFC000000) | (((allocu32 + relocOffset) & 0x0FFFFFFF) >> 2);
relocatedAddress = PHYS_TO_K0(MIPS_JUMP_TARGET(relocatedValue));
*relocDataP = relocatedValue;
}
break;
case R_MIPS_HI16 << RELOC_TYPE_SHIFT:
// Handles relocation for a hi/lo pair, part 1.
// Store the reference to the LUI instruction (hi) using the `rt` register of the instruction.
// This will be updated later in the `R_MIPS_LO16` section.
luiRefs[MIPS_REG_RT(*relocDataP)] = relocDataP;
luiVals[MIPS_REG_RT(*relocDataP)] = *relocDataP;
break;
case R_MIPS_LO16 << RELOC_TYPE_SHIFT:
// Handles relocation for a hi/lo pair, part 2.
// Grab the stored LUI (hi) from the `R_MIPS_HI16` section using the `rs` register of the instruction.
// The full address is calculated, relocated, and then used to update both the LUI and lo instructions.
// If the lo part is negative, add 1 to the LUI value.
// Note: The lo instruction is assumed to have a signed immediate.
luiInstRef = luiRefs[MIPS_REG_RS(*relocDataP)];
regValP = &luiVals[MIPS_REG_RS(*relocDataP)];
// Check address is valid for relocation
if ((((*regValP << 0x10) + (s16)*relocDataP) & 0x0F000000) == 0) {
relocOffset = ((*regValP << 0x10) + (s16)*relocDataP) - vramu32;
isLoNeg = ((relocOffset + allocu32) & 0x8000) ? 1 : 0; // adjust for signed immediate
unrelocatedAddress = (*luiInstRef << 0x10) + (s16)relocData;
*luiInstRef =
(*luiInstRef & 0xFFFF0000) | ((((relocOffset + allocu32) >> 0x10) & 0xFFFF) + isLoNeg);
relocatedValue = (*relocDataP & 0xFFFF0000) | ((relocOffset + allocu32) & 0xFFFF);
relocatedAddress = (*luiInstRef << 0x10) + (s16)relocatedValue;
*relocDataP = relocatedValue;
}
break;
}
dbg = 16;
switch (RELOC_TYPE_MASK(reloc)) {
case R_MIPS_32 << RELOC_TYPE_SHIFT:
dbg += 6;
FALLTHROUGH;
case R_MIPS_26 << RELOC_TYPE_SHIFT:
dbg += 10;
FALLTHROUGH;
case R_MIPS_LO16 << RELOC_TYPE_SHIFT:
if (gOverlayLogSeverity >= 3) {
PRINTF("%02d %08x %08x %08x ", dbg, relocDataP, relocatedValue, relocatedAddress);
PRINTF(" %08x %08x %08x %08x\n", (uintptr_t)relocDataP + vramu32 - allocu32, relocData,
unrelocatedAddress, relocOffset);
}
// Adding a break prevents matching
}
}
}