#include "global.h" #include "fp.h" s32 gUseAtanContFrac; /** * @param angle radians * @return tan(angle) */ f32 Math_FTanF(f32 angle) { f32 sin = sinf(angle); f32 cos = cosf(angle); return sin / cos; } f32 Math_FFloorF(f32 x) { return floorf(x); } f32 Math_FCeilF(f32 x) { return ceilf(x); } f32 Math_FRoundF(f32 x) { return roundf(x); } f32 Math_FTruncF(f32 x) { return truncf(x); } f32 Math_FNearbyIntF(f32 x) { return nearbyintf(x); } /* Arctangent approximation using a Taylor series (one quadrant) */ f32 Math_FAtanTaylorQF(f32 x) { static const f32 coeffs[] = { -1.0f / 3, +1.0f / 5, -1.0f / 7, +1.0f / 9, -1.0f / 11, +1.0f / 13, -1.0f / 15, +1.0f / 17, 0.0f, }; f32 poly = x; f32 sq = SQ(x); f32 exp = x * sq; const f32* c = coeffs; f32 term; while (true) { term = *c++ * exp; if (poly + term == poly) { break; } poly = poly + term; exp = exp * sq; } return poly; } /* Ditto for two quadrants */ f32 Math_FAtanTaylorF(f32 x) { f32 t; f32 q; if (x > 0.0f) { t = x; } else if (x < 0.0f) { t = -x; } else if (x == 0.0f) { return 0.0f; } else { return qNaN0x10000; } if (t <= M_SQRT2 - 1.0f) { return Math_FAtanTaylorQF(x); } if (t >= M_SQRT2 + 1.0f) { q = M_PI / 2 - Math_FAtanTaylorQF(1.0f / t); } else { q = M_PI / 4 - Math_FAtanTaylorQF((1.0f - t) / (1.0f + t)); } if (x > 0.0f) { return q; } else { return -q; } } /* Arctangent approximation using a continued fraction */ f32 Math_FAtanContFracF(f32 x) { s32 sector; f32 z; f32 conv; f32 sq; s32 i; if (x >= -1.0f && x <= 1.0f) { sector = 0; } else if (x > 1.0f) { sector = 1; x = 1.0f / x; } else if (x < -1.0f) { sector = -1; x = 1.0f / x; } else { return qNaN0x10000; } sq = SQ(x); conv = 0.0f; z = 8.0f; for (i = 8; i != 0; i--) { conv = SQ(z) * sq / (2.0f * z + 1.0f + conv); z -= 1.0f; } conv = x / (1.0f + conv); if (sector == 0) { return conv; } else if (sector > 0) { return M_PI / 2 - conv; } else { return -M_PI / 2 - conv; } } /** * @return arctan(x) in radians, in (-pi/2,pi/2) range */ f32 Math_FAtanF(f32 x) { if (!gUseAtanContFrac) { return Math_FAtanTaylorF(x); } else { return Math_FAtanContFracF(x); } } /** * @return angle to (x,y) from vector (1,0) around (0,0) in radians, in (-pi,pi] range */ f32 Math_FAtan2F(f32 y, f32 x) { if (x == 0.0f) { if (y == 0.0f) { return 0.0f; } else if (y > 0.0f) { return M_PI / 2; } else if (y < 0.0f) { return -M_PI / 2; } else { return qNaN0x10000; } } else if (x >= 0.0f) { return Math_FAtanF(y / x); } else if (y < 0.0f) { return Math_FAtanF(y / x) - M_PI; } else { return M_PI - Math_FAtanF(-(y / x)); } } /** * @return arcsin(x) in radians, in [-pi/2,pi/2] range */ f32 Math_FAsinF(f32 x) { return Math_FAtan2F(x, sqrtf(1.0f - SQ(x))); } /** * @return arccos(x) in radians, in [0,pi] range */ f32 Math_FAcosF(f32 x) { return M_PI / 2 - Math_FAsinF(x); }