#ifndef Z64MATH_H #define Z64MATH_H #include "ultra64.h" #define VEC_SET(V,X,Y,Z) (V).x=(X);(V).y=(Y);(V).z=(Z) typedef struct { f32 x, y; } Vec2f; // size = 0x08 typedef struct { f32 x, y, z; } Vec3f; // size = 0x0C typedef struct { u16 x, y, z; } Vec3us; // size = 0x06 typedef struct { s16 x, y, z; } Vec3s; // size = 0x06 typedef struct { s32 x, y, z; } Vec3i; // size = 0x0C typedef struct { Vec3s center; s16 radius; } Sphere16; // size = 0x08 typedef struct { Vec3f center; f32 radius; } Spheref; // size = 0x10 typedef struct { Vec3f normal; f32 originDist; } Plane; // size = 0x10 typedef struct { Vec3f vtx[3]; Plane plane; } TriNorm; // size = 0x34 typedef struct { /* 0x0000 */ s16 radius; /* 0x0002 */ s16 height; /* 0x0004 */ s16 yShift; /* 0x0006 */ Vec3s pos; } Cylinder16; // size = 0x0C typedef struct { /* 0x00 */ f32 radius; /* 0x04 */ f32 height; /* 0x08 */ f32 yShift; /* 0x0C */ Vec3f pos; } Cylinderf; // size = 0x18 typedef struct { /* 0x0000 */ Vec3f point; /* 0x000C */ Vec3f dir; } InfiniteLine; // size = 0x18 typedef struct { /* 0x0000 */ Vec3f a; /* 0x000C */ Vec3f b; } Linef; // size = 0x18 typedef struct { /* 0x0 */ f32 r; // radius /* 0x4 */ s16 pitch; // depends on coordinate system. See below. /* 0x6 */ s16 yaw; // azimuthal angle } VecSphGeo; // size = 0x8 // Defines a point in the spherical coordinate system. // Pitch is 0 along the positive y-axis (up) typedef VecSphGeo VecSph; // Defines a point in the geographic coordinate system. // Pitch is 0 along the xz-plane (horizon) typedef VecSphGeo VecGeo; #define LERP(x, y, scale) (((y) - (x)) * (scale) + (x)) #define LERP32(x, y, scale) ((s32)(((y) - (x)) * (scale)) + (x)) #define LERP16(x, y, scale) ((s16)(((y) - (x)) * (scale)) + (x)) #define F32_LERP(v0,v1,t) ((v0) * (1.0f - (t)) + (v1) * (t)) #define F32_LERPIMP(v0, v1, t) (v0 + ((v1 - v0) * t)) #define F32_LERPIMPINV(v0, v1, t) ((v0) + (((v1) - (v0)) / (t))) #define BINANG_LERPIMP(v0, v1, t) ((v0) + (s16)((s16)((v1) - (v0)) * (t))) #define BINANG_LERPIMPINV(v0, v1, t) ((v0) + (s16)((v1) - (v0)) / (t)) #define VEC3F_LERPIMPDST(dst, v0, v1, t){ \ (dst)->x = (v0)->x + (((v1)->x - (v0)->x) * t); \ (dst)->y = (v0)->y + (((v1)->y - (v0)->y) * t); \ (dst)->z = (v0)->z + (((v1)->z - (v0)->z) * t); \ } #define IS_ZERO(f) (fabsf(f) < 0.008f) // Angle conversion macros #define DEG_TO_BINANG(degrees) (s16)((degrees) * (0x8000 / 180.0f)) #define RAD_TO_BINANG(radians) (s16)((radians) * (0x8000 / M_PI)) #define RAD_TO_DEG(radians) ((radians) * (180.0f / M_PI)) #define DEG_TO_RAD(degrees) ((degrees) * (M_PI / 180.0f)) #define BINANG_TO_DEG(binang) ((f32)(binang) * (180.0f / 0x8000)) #define BINANG_TO_RAD(binang) ((f32)(binang) * (M_PI / 0x8000)) #define BINANG_TO_RAD_ALT(binang) (((f32)(binang) / (f32)0x8000) * M_PI) #define BINANG_TO_RAD_ALT2(binang) (((f32)(binang) * M_PI) / 0x8000) // Vector macros #define SQXZ(vec) ((vec).x * (vec).x + (vec).z * (vec).z) #define DOTXZ(vec1, vec2) ((vec1).x * (vec2).x + (vec1).z * (vec2).z) #define SQXYZ(vec) ((vec).x * (vec).x + (vec).y * (vec).y + (vec).z * (vec).z) #define DOTXYZ(vec1, vec2) ((vec1).x * (vec2).x + (vec1).y * (vec2).y + (vec1).z * (vec2).z) #endif