#include "global.h" #include "terminal.h" // For retail BSS ordering, the block number of cbf in Math3D_CylVsCylOverlapCenterDist // must be 0. #pragma increment_block_number 190 s32 Math3D_LineVsLineClosestTwoPoints(Vec3f* lineAPointA, Vec3f* lineAPointB, Vec3f* lineBPointA, Vec3f* lineBPointB, Vec3f* lineAClosestToB, Vec3f* lineBClosestToA); s32 Math3D_TriLineIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* linePointA, Vec3f* linePointB, Vec3f* intersect, s32 fromFront); s32 Math3D_PlaneVsPlaneNewLine(f32 planeAA, f32 planeAB, f32 planeAC, f32 planeADist, f32 planeBA, f32 planeBB, f32 planeBC, f32 planeBDist, InfiniteLine* intersect); s32 Math3D_CirSquareVsTriSquare(f32 x0, f32 y0, f32 x1, f32 y1, f32 x2, f32 y2, f32 centerX, f32 centerY, f32 radius); s32 Math3D_SphCubeVsTriCube(Vec3f* v0, Vec3f* v1, Vec3f* v2, Vec3f* center, f32 radius); /** * Creates an infinite line along the intersection of the plane defined from `planeAA`x + `planeAB`y + `planeAB`z + * `planeADist` = 0 and `planeBA`x + `planeBB`y + `planeBC`z + `planeBDist` = 0, and finds the closest point on that * intersection to the line segment `linePointA and linePointB`, outputs the intersection to `closestPoint` */ s32 Math3D_PlaneVsLineSegClosestPoint(f32 planeAA, f32 planeAB, f32 planeAC, f32 planeADist, f32 planeBA, f32 planeBB, f32 planeBC, f32 planeBDist, Vec3f* linePointA, Vec3f* linePointB, Vec3f* closestPoint) { static InfiniteLine planeIntersectLine; static Linef planeIntersectSeg; Vec3f sp34; // unused if (!Math3D_PlaneVsPlaneNewLine(planeAA, planeAB, planeAC, planeADist, planeBA, planeBB, planeBC, planeBDist, &planeIntersectLine)) { // The planes are parallel return false; } // create a line segment on the plane. Math_Vec3f_Copy(&planeIntersectSeg.a, &planeIntersectLine.point); planeIntersectSeg.b.x = (planeIntersectLine.dir.x * 100.0f) + planeIntersectLine.point.x; planeIntersectSeg.b.y = (planeIntersectLine.dir.y * 100.0f) + planeIntersectLine.point.y; planeIntersectSeg.b.z = (planeIntersectLine.dir.z * 100.0f) + planeIntersectLine.point.z; // closestPoint is a point on planeIntersect, sp34 is a point on linePointA, linePointB if (!Math3D_LineVsLineClosestTwoPoints(&planeIntersectSeg.a, &planeIntersectSeg.b, linePointA, linePointB, closestPoint, &sp34)) { return false; } return true; } /** * Finds the two points on lines A and B where the lines are closest together. */ s32 Math3D_LineVsLineClosestTwoPoints(Vec3f* lineAPointA, Vec3f* lineAPointB, Vec3f* lineBPointA, Vec3f* lineBPointB, Vec3f* lineAClosestToB, Vec3f* lineBClosestToA) { f32 sqMag; f32 scaleB; f32 lineAx; f32 lineAy; f32 lineAz; f32 lineBx; f32 lineBy; f32 lineBz; f32 compAAlongB; f32 compBAAlongB; Vec3f lineAPerpB; Vec3f lineBAPerpB; f32 tA; f32 tB; lineAx = lineAPointB->x - lineAPointA->x; lineAy = lineAPointB->y - lineAPointA->y; lineAz = lineAPointB->z - lineAPointA->z; lineBx = lineBPointB->x - lineBPointA->x; lineBy = lineBPointB->y - lineBPointA->y; lineBz = lineBPointB->z - lineBPointA->z; sqMag = SQ(lineBx) + SQ(lineBy) + SQ(lineBz); if (IS_ZERO(sqMag)) { return false; } scaleB = 1.0f / sqMag; compAAlongB = ((lineAx * lineBx) + (lineAy * lineBy) + (lineAz * lineBz)) * scaleB; compBAAlongB = ((lineBx * (lineAPointA->x - lineBPointA->x)) + (lineBy * (lineAPointA->y - lineBPointA->y)) + (lineBz * (lineAPointA->z - lineBPointA->z))) * scaleB; lineAPerpB.x = lineAx - (lineBx * compAAlongB); lineAPerpB.y = lineAy - (lineBy * compAAlongB); lineAPerpB.z = lineAz - (lineBz * compAAlongB); sqMag = SQXYZ(lineAPerpB); if (IS_ZERO(sqMag)) { return false; } lineBAPerpB.x = (lineAPointA->x - lineBPointA->x) - (lineBx * compBAAlongB); lineBAPerpB.y = (lineAPointA->y - lineBPointA->y) - (lineBy * compBAAlongB); lineBAPerpB.z = (lineAPointA->z - lineBPointA->z) - (lineBz * compBAAlongB); tA = -DOTXYZ(lineAPerpB, lineBAPerpB) / sqMag; lineAClosestToB->x = (lineAx * tA) + lineAPointA->x; lineAClosestToB->y = (lineAy * tA) + lineAPointA->y; lineAClosestToB->z = (lineAz * tA) + lineAPointA->z; tB = (compAAlongB * tA) + compBAAlongB; lineBClosestToA->x = (lineBx * tB) + lineBPointA->x; lineBClosestToA->y = (lineBy * tB) + lineBPointA->y; lineBClosestToA->z = (lineBz * tB) + lineBPointA->z; return true; } /** * Determines the closest point on the line `line` to `pos`, by forming a line perpendicular from * `point` to `line` closest point is placed in `closestPoint` */ void Math3D_LineClosestToPoint(InfiniteLine* line, Vec3f* pos, Vec3f* closestPoint) { f32 dirVectorLengthSq; f32 t; dirVectorLengthSq = Math3D_Vec3fMagnitudeSq(&line->dir); if (IS_ZERO(dirVectorLengthSq)) { PRINTF(VT_COL(YELLOW, BLACK)); // "Math3D_lineVsPosSuisenCross(): No straight line length" PRINTF("Math3D_lineVsPosSuisenCross():直線の長さがありません\n"); PRINTF("cross = pos を返します。\n"); // "Returns cross = pos." PRINTF(VT_RST); Math_Vec3f_Copy(closestPoint, pos); //! @bug Missing early return } t = (((pos->x - line->point.x) * line->dir.x) + ((pos->y - line->point.y) * line->dir.y) + ((pos->z - line->point.z) * line->dir.z)) / dirVectorLengthSq; closestPoint->x = (line->dir.x * t) + line->point.x; closestPoint->y = (line->dir.y * t) + line->point.y; closestPoint->z = (line->dir.z * t) + line->point.z; } void Math3D_FindPointOnPlaneIntersect(f32 planeAAxis1Norm, f32 planeAAxis2Norm, f32 planeBAxis1Norm, f32 planeBAxis2Norm, f32 axis3Direction, f32 planeADist, f32 planeBDist, f32* axis1Point, f32* axis2Point) { *axis1Point = ((planeAAxis2Norm * planeBDist) - (planeBAxis2Norm * planeADist)) / axis3Direction; *axis2Point = ((planeBAxis1Norm * planeADist) - (planeAAxis1Norm * planeBDist)) / axis3Direction; } /** * Creates a line between the intersections of two planes defined from `planeAA`x + `planeAB`y + `planeAC`z + * `planeADist` = 0 and `planeBA`x + `planeBB`y + `planeBC`z + `planeBDist` = 0, and outputs the line to `intersect`. * Returns false if the planes are parallel. */ s32 Math3D_PlaneVsPlaneNewLine(f32 planeAA, f32 planeAB, f32 planeAC, f32 planeADist, f32 planeBA, f32 planeBB, f32 planeBC, f32 planeBDist, InfiniteLine* intersect) { char pad[4]; Vec3f planeANormal; Vec3f planeBNormal; f32 dirX; f32 dirY; f32 dirZ; VEC_SET(planeANormal, planeAA, planeAB, planeAC); VEC_SET(planeBNormal, planeBA, planeBB, planeBC); Math3D_Vec3f_Cross(&planeANormal, &planeBNormal, &intersect->dir); if (IS_ZERO(intersect->dir.x) && IS_ZERO(intersect->dir.y) && IS_ZERO(intersect->dir.z)) { // planes are parallel return false; } dirX = fabsf(intersect->dir.x); dirY = fabsf(intersect->dir.y); dirZ = fabsf(intersect->dir.z); if ((dirX >= dirY) && (dirX >= dirZ)) { Math3D_FindPointOnPlaneIntersect(planeAB, planeAC, planeBB, planeBC, intersect->dir.x, planeADist, planeBDist, &intersect->point.y, &intersect->point.z); intersect->point.x = 0.0f; } else if ((dirY >= dirX) && (dirY >= dirZ)) { Math3D_FindPointOnPlaneIntersect(planeAC, planeAA, planeBC, planeBA, intersect->dir.y, planeADist, planeBDist, &intersect->point.z, &intersect->point.x); intersect->point.y = 0.0f; } else { Math3D_FindPointOnPlaneIntersect(planeAA, planeAB, planeBA, planeBB, intersect->dir.z, planeADist, planeBDist, &intersect->point.x, &intersect->point.y); intersect->point.z = 0.0f; } return true; } /** * Gets the closest point on the line formed from the intersection of of the planes defined from * `planeAA`x + `planeAB`y + `planeAC`z + `planeADist` = 0 and * `planeBA`x + `planeBB`y + `planeBC`z + `planeBDist` = 0 * the point on the intersection line closest to `point` is placed in `closestPoint` * returns false if the planes are parallel. */ s32 Math3D_PlaneVsPlaneVsLineClosestPoint(f32 planeAA, f32 planeAB, f32 planeAC, f32 planeADist, f32 planeBA, f32 planeBB, f32 planeBC, f32 planeBDist, Vec3f* point, Vec3f* closestPoint) { static InfiniteLine planeIntersect; if (!Math3D_PlaneVsPlaneNewLine(planeAA, planeAB, planeAC, planeADist, planeBA, planeBB, planeBC, planeBDist, &planeIntersect)) { return false; } Math3D_LineClosestToPoint(&planeIntersect, point, closestPoint); return true; } /** * Finds a point on the line from starting point `v0`, and directional vector `dir` * which is `dist` length from the starting point. Result is placed in `ret` */ void Math3D_PointOnInfiniteLine(Vec3f* v0, Vec3f* dir, f32 dist, Vec3f* ret) { ret->x = (dir->x * dist) + v0->x; ret->y = (dir->y * dist) + v0->y; ret->z = (dir->z * dist) + v0->z; } /** * Splits the line segment from end points `v0` and `v1`, and splits that segment * by `ratio` of `v0`:`v1`, places the resulting point on the line in `ret` */ void Math3D_LineSplitRatio(Vec3f* v0, Vec3f* v1, f32 ratio, Vec3f* ret) { Vec3f diff; Math_Vec3f_Diff(v1, v0, &diff); Math3D_PointOnInfiniteLine(v0, &diff, ratio, ret); } /** * Calculates the cosine between vectors `a` and `b` */ f32 Math3D_Cos(Vec3f* a, Vec3f* b) { f32 ret; Math3D_CosOut(a, b, &ret); return ret; } /** * Calculates the cosine between vectors `a` and `b` and places the result in `ret` * returns true if the cosine cannot be calculated because the product of the magnitudes is zero */ s32 Math3D_CosOut(Vec3f* a, Vec3f* b, f32* dst) { f32 magProduct; magProduct = Math3D_Vec3fMagnitude(a) * Math3D_Vec3fMagnitude(b); if (IS_ZERO(magProduct)) { *dst = 0.0f; return true; } *dst = ((a->x * b->x) + (a->y * b->y) + (a->z * b->z)) / magProduct; return false; } /** * Reflects vector `vec` across the normal vector `normal`, reflection vector is placed in * `reflVec` */ void Math3D_Vec3fReflect(Vec3f* vec, Vec3f* normal, Vec3f* reflVec) { f32 normScaleY; Vec3f negVec; f32 normScaleZ; f32 normScaleX; f32 vecDotNorm; negVec.x = vec->x * -1.0f; negVec.y = vec->y * -1.0f; negVec.z = vec->z * -1.0f; vecDotNorm = Math3D_Cos(&negVec, normal); normScaleX = normal->x * vecDotNorm; normScaleY = normal->y * vecDotNorm; normScaleZ = normal->z * vecDotNorm; reflVec->x = ((normScaleX + vec->x) + (normScaleX + vec->x)) + negVec.x; reflVec->y = ((normScaleY + vec->y) + (normScaleY + vec->y)) + negVec.y; reflVec->z = ((normScaleZ + vec->z) + (normScaleZ + vec->z)) + negVec.z; } /** * Checks if the point (`x`,`y`) is contained within the square formed from (`upperLeftX`,`upperLeftY`) to * (`lowerRightX`,`lowerRightY`) */ s32 Math3D_PointInSquare2D(f32 upperLeftX, f32 lowerRightX, f32 upperLeftY, f32 lowerRightY, f32 x, f32 y) { if (x >= upperLeftX && x <= lowerRightX && y >= upperLeftY && y <= lowerRightY) { return true; } return false; } /** * Checks if the square formed around the circle with center (`centerX`,`centerY`) with radius `radius` * touches any portion of the square formed around the triangle with vertices (`x0`,`y0`), (`x1`,`y1`), * and (`x2`,`y2`) */ s32 Math3D_CirSquareVsTriSquare(f32 x0, f32 y0, f32 x1, f32 y1, f32 x2, f32 y2, f32 centerX, f32 centerY, f32 radius) { f32 minX; f32 maxX; f32 minY; f32 maxY; minX = maxX = x0; minY = maxY = y0; if (x1 < minX) { minX = x1; } else if (maxX < x1) { maxX = x1; } if (y1 < minY) { minY = y1; } else if (maxY < y1) { maxY = y1; } if (x2 < minX) { minX = x2; } else if (maxX < x2) { maxX = x2; } if (y2 < minY) { minY = y2; } else if (maxY < y2) { maxY = y2; } if ((minX - radius) <= centerX && (maxX + radius) >= centerX && (minY - radius) <= centerY && (maxY + radius) >= centerY) { return true; } return false; } /** * Checks if the cube formed around the triangle formed from `v0`, `v1`, and `v2` * has any portion touching the cube formed around the sphere with center `center` * and radius of `radius` */ s32 Math3D_SphCubeVsTriCube(Vec3f* v0, Vec3f* v1, Vec3f* v2, Vec3f* center, f32 radius) { f32 minX; f32 maxX; f32 minY; f32 maxY; f32 minZ; f32 maxZ; minX = maxX = v0->x; minY = maxY = v0->y; minZ = maxZ = v0->z; if (v1->x < minX) { minX = v1->x; } else if (maxX < v1->x) { maxX = v1->x; } if (v1->y < minY) { minY = v1->y; } else if (maxY < v1->y) { maxY = v1->y; } if (v1->z < minZ) { minZ = v1->z; } else if (maxZ < v1->z) { maxZ = v1->z; } if (v2->x < minX) { minX = v2->x; } else if (maxX < v2->x) { maxX = v2->x; } if (v2->y < minY) { minY = v2->y; } else if (maxY < v2->y) { maxY = v2->y; } if (v2->z < minZ) { minZ = v2->z; } else if (maxZ < v2->z) { maxZ = v2->z; } if ((center->x >= (minX - radius)) && (center->x <= (maxX + radius)) && (center->y >= (minY - radius)) && (center->y <= (maxY + radius)) && (center->z >= (minZ - radius)) && (center->z <= (maxZ + radius))) { return true; } return false; } /** * Returns the distance squared between `a` and `b` on a single axis */ f32 Math3D_Dist1DSq(f32 a, f32 b) { return SQ(a) + SQ(b); } /** * Returns the distance between `a` and `b` on a single axis */ f32 Math3D_Dist1D(f32 a, f32 b) { return sqrtf(Math3D_Dist1DSq(a, b)); } /** * Returns the distance squared between (`x0`,`y0`) and (`x1`,`x2`) */ f32 Math3D_Dist2DSq(f32 x0, f32 y0, f32 x1, f32 y1) { return Math3D_Dist1DSq(x0 - x1, y0 - y1); } /** * Returns the distance between points (`x0`,`y0`) and (`x1`,`y1`) */ f32 Math3D_Dist2D(f32 x0, f32 y0, f32 x1, f32 y1) { return sqrtf(Math3D_Dist2DSq(x0, y0, x1, y1)); } /** * Returns the magnitude (length) squared of `vec` */ f32 Math3D_Vec3fMagnitudeSq(Vec3f* vec) { return SQ(vec->x) + SQ(vec->y) + SQ(vec->z); } /** * Returns the magnitude (length) of `vec` */ f32 Math3D_Vec3fMagnitude(Vec3f* vec) { return sqrt(Math3D_Vec3fMagnitudeSq(vec)); } /** * Returns the distance between `a` and `b` squared. */ f32 Math3D_Vec3fDistSq(Vec3f* a, Vec3f* b) { Vec3f diff; Math_Vec3f_Diff(a, b, &diff); return Math3D_Vec3fMagnitudeSq(&diff); } /* * Calculates the distance between points `a` and `b` */ f32 Math3D_Vec3f_DistXYZ(Vec3f* a, Vec3f* b) { return Math_Vec3f_DistXYZ(a, b); } /* * Calculates the distance between `a` and `b`. */ f32 Math3D_DistXYZ16toF(Vec3s* a, Vec3f* b) { Vec3f diff; diff.x = a->x - b->x; diff.y = a->y - b->y; diff.z = a->z - b->z; return Math3D_Vec3fMagnitude(&diff); } /** * Gets the Z portion of the cross product of vectors `a - (`dx`,`dy`,z) and `b` - (`dx`,`dy`,z) */ f32 Math3D_Vec3fDiff_CrossZ(Vec3f* a, Vec3f* b, f32 dx, f32 dy) { return ((a->x - dx) * (b->y - dy)) - ((a->y - dy) * (b->x - dx)); } /** * Gets the X portion of the cross product of vectors `a - (x,`dy`,`dz`) and `b` - (x,`dy`,`dz`) */ f32 Math3D_Vec3fDiff_CrossX(Vec3f* a, Vec3f* b, f32 dy, f32 dz) { return ((a->y - dy) * (b->z - dz)) - ((a->z - dz) * (b->y - dy)); } /** * Gets the Y portion of the cross product of vectors `a - (`dx`,y,`dz`) and `b` - (`dx`,y,`dz`) */ f32 Math3D_Vec3fDiff_CrossY(Vec3f* a, Vec3f* b, f32 dz, f32 dx) { return ((a->z - dz) * (b->x - dx)) - ((a->x - dx) * (b->z - dz)); } /** * Gets the Cross Product of vectors `a` and `b` and places the result in `ret` */ void Math3D_Vec3f_Cross(Vec3f* a, Vec3f* b, Vec3f* ret) { ret->x = (a->y * b->z) - (a->z * b->y); ret->y = (a->z * b->x) - (a->x * b->z); ret->z = (a->x * b->y) - (a->y * b->x); } /* * Calculates the normal vector to a surface with sides `vb` - `va` and `vc` - `va` * outputs the normal to `normal` */ void Math3D_SurfaceNorm(Vec3f* va, Vec3f* vb, Vec3f* vc, Vec3f* normal) { static Vec3f abDiff; static Vec3f acDiff; Math_Vec3f_Diff(vb, va, &abDiff); Math_Vec3f_Diff(vc, va, &acDiff); Math3D_Vec3f_Cross(&abDiff, &acDiff, normal); } /** * Creates flags relative to the faces of a cube. */ s32 Math3D_PointRelativeToCubeFaces(Vec3f* point, Vec3f* min, Vec3f* max) { s32 ret = 0; if (point->x > max->x) { ret = 1; } if (point->x < min->x) { ret |= 2; } if (point->y > max->y) { ret |= 4; } if (point->y < min->y) { ret |= 8; } if (point->z > max->z) { ret |= 0x10; } if (point->z < min->z) { ret |= 0x20; } return ret; } /** * Creates flags of `point` relative to the edges of a cube */ s32 Math3D_PointRelativeToCubeEdges(Vec3f* point, Vec3f* min, Vec3f* max) { s32 ret = 0; if ((-min->x + max->y) < (-point->x + point->y)) { ret |= 1; } if ((-point->x + point->y) < (-max->x + min->y)) { ret |= 2; } if ((max->x + max->y) < (point->x + point->y)) { ret |= 4; } if ((point->x + point->y) < (min->x + min->y)) { ret |= 8; } if ((-min->z + max->y) < (-point->z + point->y)) { ret |= 0x10; } if ((-point->z + point->y) < (-max->z + min->y)) { ret |= 0x20; } if ((max->z + max->y) < (point->z + point->y)) { ret |= 0x40; } if ((point->z + point->y) < (min->z + min->y)) { ret |= 0x80; } if ((-min->z + max->x) < (-point->z + point->x)) { ret |= 0x100; } if ((-point->z + point->x) < (-max->z + min->x)) { ret |= 0x200; } if ((max->z + max->x) < (point->z + point->x)) { ret |= 0x400; } if ((point->z + point->x) < (min->z + min->x)) { ret |= 0x800; } return ret; } /** * Creates flags for `point` relative to the vertices of a cube */ s32 Math3D_PointRelativeToCubeVertices(Vec3f* point, Vec3f* min, Vec3f* max) { s32 ret = 0; if ((max->x + max->y + max->z) < (point->x + point->y + point->z)) { ret = 1; } if ((-min->x + max->y + max->z) < (-point->x + point->y + point->z)) { ret |= 2; } if ((-min->x + max->y - min->z) < (-point->x + point->y - point->z)) { ret |= 4; } if ((max->x + max->y - min->z) < (point->x + point->y - point->z)) { ret |= 8; } if ((max->x - min->y + max->z) < (point->x - point->y + point->z)) { ret |= 0x10; } //! @bug: The next 2 conditions are the same check. if ((-min->x - min->y + max->z) < (-point->x - point->y + point->z)) { ret |= 0x20; } if ((-min->x - min->y + max->z) < (-point->x - point->y + point->z)) { ret |= 0x40; } if ((-min->x - min->y - min->z) < (-point->x - point->y - point->z)) { ret |= 0x80; } return ret; } /** * Checks if a line segment with endpoints `a` and `b` intersect a cube */ s32 Math3D_LineVsCube(Vec3f* min, Vec3f* max, Vec3f* a, Vec3f* b) { static Vec3f triVtx0; static Vec3f triVtx1; static Vec3f triVtx2; static Vec3f intersectPoint; s32 flags[2]; flags[0] = flags[1] = 0; flags[0] = Math3D_PointRelativeToCubeFaces(a, min, max); if (!flags[0]) { return true; } flags[1] = Math3D_PointRelativeToCubeFaces(b, min, max); if (!flags[1]) { return true; } if (flags[0] & flags[1]) { return false; } flags[0] |= (Math3D_PointRelativeToCubeEdges(a, min, max) << 8); flags[1] |= (Math3D_PointRelativeToCubeEdges(b, min, max) << 8); if (flags[0] & flags[1]) { return false; } flags[0] |= (Math3D_PointRelativeToCubeVertices(a, min, max) << 0x18); flags[1] |= (Math3D_PointRelativeToCubeVertices(b, min, max) << 0x18); if (flags[0] & flags[1]) { return false; } // face 1 triVtx0.x = min->x; triVtx0.y = min->y; triVtx0.z = min->z; triVtx1.x = min->x; triVtx1.y = min->y; triVtx1.z = max->z; triVtx2.x = min->x; triVtx2.y = max->y; triVtx2.z = max->z; if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, -1.0f, 0.0f, 0.0f, min->x, a, b, &intersectPoint, 0)) { return true; } triVtx0.x = min->x; triVtx0.y = min->y; triVtx0.z = min->z; triVtx1.x = min->x; triVtx1.y = max->y; triVtx1.z = max->z; triVtx2.x = min->x; triVtx2.y = max->y; triVtx2.z = min->z; if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, -1.0f, 0.0f, 0.0f, min->x, a, b, &intersectPoint, 0)) { return true; } // face 2 triVtx0.x = min->x; triVtx0.y = max->y; triVtx0.z = max->z; triVtx1.x = min->x; triVtx1.y = min->y; triVtx1.z = max->z; triVtx2.x = max->x; triVtx2.y = max->y; triVtx2.z = max->z; if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 0.0f, 1.0f, -max->z, a, b, &intersectPoint, 0)) { return true; } triVtx0.x = max->x; triVtx0.y = max->y; triVtx0.z = max->z; triVtx1.x = min->x; triVtx1.y = min->y; triVtx1.z = max->z; triVtx2.x = max->x; //! @bug trVtx1.y should be triVtx2.y, prevents a tri on the cube from being checked. triVtx1.y = min->y; triVtx2.z = max->z; if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 0.0f, 1.0f, -max->z, a, b, &intersectPoint, 0)) { return true; } // face 3 triVtx0.x = max->x; triVtx0.y = max->y; triVtx0.z = max->z; triVtx1.x = min->x; triVtx1.y = max->y; triVtx1.z = min->z; triVtx2.x = min->x; triVtx2.y = max->y; triVtx2.z = max->z; if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 1.0f, 0.0f, -max->y, a, b, &intersectPoint, 0)) { return true; } triVtx0.x = max->x; triVtx0.y = max->y; triVtx0.z = max->z; triVtx1.x = max->x; triVtx1.y = max->y; triVtx1.z = min->z; triVtx2.x = min->x; triVtx2.y = max->y; triVtx2.z = min->z; if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 1.0f, 0.0f, -max->y, a, b, &intersectPoint, 0)) { return true; } // face 4 triVtx0.x = min->x; triVtx0.y = min->y; triVtx0.z = min->z; triVtx1.x = min->x; triVtx1.y = max->y; triVtx1.z = min->z; triVtx2.x = max->x; triVtx2.y = max->y; triVtx2.z = min->z; if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 0.0f, -1.0f, min->z, a, b, &intersectPoint, 0)) { return true; } triVtx0.x = min->x; triVtx0.y = min->y; triVtx0.z = min->z; triVtx1.x = max->x; triVtx1.y = max->y; triVtx1.z = min->z; triVtx2.x = max->x; triVtx2.y = min->y; triVtx2.z = min->z; // face 5 if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 0.0f, -1.0f, min->z, a, b, &intersectPoint, 0)) { return true; } triVtx0.x = min->x; triVtx0.y = min->y; triVtx0.z = min->z; triVtx1.x = max->x; triVtx1.y = min->y; triVtx1.z = min->z; triVtx2.x = max->x; triVtx2.y = min->y; triVtx2.z = max->z; if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, -1.0f, 0.0f, min->y, a, b, &intersectPoint, 0)) { return true; } triVtx0.x = min->x; triVtx0.y = min->y; triVtx0.z = min->z; triVtx1.x = max->x; triVtx1.y = min->y; triVtx1.z = max->z; triVtx2.x = min->x; triVtx2.y = min->y; triVtx2.z = max->z; // face 6 if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, -1.0f, 0.0f, min->y, a, b, &intersectPoint, 0)) { return true; } triVtx0.x = max->x; triVtx0.y = max->y; triVtx0.z = max->z; triVtx1.x = max->x; triVtx1.y = min->y; triVtx1.z = min->z; triVtx2.x = max->x; triVtx2.y = max->y; triVtx2.z = min->z; if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 1.0f, 0.0f, 0.0f, -max->x, a, b, &intersectPoint, 0)) { return true; } triVtx0.x = max->x; triVtx0.y = max->y; triVtx0.z = max->z; triVtx1.x = max->x; triVtx1.y = min->y; triVtx1.z = max->z; triVtx2.x = max->x; triVtx2.y = min->y; triVtx2.z = min->z; if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 1.0f, 0.0f, 0.0f, -max->x, a, b, &intersectPoint, 0)) { return true; } return false; } /** * Checks if a line segment with endpoints `a` and `b` intersect a cube */ s32 Math3D_LineVsCubeShort(Vec3s* min, Vec3s* max, Vec3s* a, Vec3s* b) { static Vec3f minF; static Vec3f maxF; static Vec3f aF; static Vec3f bF; minF.x = min->x; minF.y = min->y; minF.z = min->z; maxF.x = max->x; maxF.y = max->y; maxF.z = max->z; aF.x = a->x; aF.y = a->y; aF.z = a->z; bF.x = b->x; bF.y = b->y; bF.z = b->z; return Math3D_LineVsCube(&minF, &maxF, &aF, &bF); } /** * Rotates the xz plane around the y axis `angle` degrees. * outputs the plane equation `a``pointOnPlane->x` + 0y + `c``pointOnPlane->z`+`d` = 0 */ void Math3D_RotateXZPlane(Vec3f* pointOnPlane, s16 angle, f32* a, f32* c, f32* d) { *a = Math_SinS(angle) * 32767.0f; *c = Math_CosS(angle) * 32767.0f; *d = -((*a * pointOnPlane->x) + (*c * pointOnPlane->z)); } /* * Defines a plane from vertices `va`, `vb`, and `vc`. Normal components are output to * `nx`, `ny`, and `nz`. Distance from the origin is output to `originDist` * Satisfies the plane equation NxVx + NyVy + NzVz + D = 0 */ void Math3D_DefPlane(Vec3f* va, Vec3f* vb, Vec3f* vc, f32* nx, f32* ny, f32* nz, f32* originDist) { static Vec3f normal; f32 normMagnitude; f32 normMagInv; Math3D_SurfaceNorm(va, vb, vc, &normal); normMagnitude = sqrtf(SQ(normal.x) + SQ(normal.y) + SQ(normal.z)); if (!IS_ZERO(normMagnitude)) { normMagInv = 1.0f / normMagnitude; *nx = normal.x * normMagInv; *ny = normal.y * normMagInv; *nz = normal.z * normMagInv; *originDist = -((*nx * va->x) + (*ny * va->y) + (*nz * va->z)); } else { *originDist = 0.0f; *nz = 0.0f; *ny = 0.0f; *nx = 0.0f; } } /* * Returns the answer to the plane equation with elements specified by arguments. */ f32 Math3D_Planef(f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* pointOnPlane) { return (nx * pointOnPlane->x) + (ny * pointOnPlane->y) + (nz * pointOnPlane->z) + originDist; } /* * Returns the answer to the plane equation */ f32 Math3D_Plane(Plane* plane, Vec3f* pointOnPlane) { return (plane->normal.x * pointOnPlane->x) + (plane->normal.y * pointOnPlane->y) + (plane->normal.z * pointOnPlane->z) + plane->originDist; } /* * Calculates the absolute distance from a point `p` to the plane defined as * `nx`, `ny`, `nz`, and `originDist` */ f32 Math3D_UDistPlaneToPos(f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* p) { if (OOT_DEBUG && IS_ZERO(sqrtf(SQ(nx) + SQ(ny) + SQ(nz)))) { PRINTF(VT_COL(YELLOW, BLACK)); // "Math3DLengthPlaneAndPos(): Normal size is near zero %f %f %f" PRINTF("Math3DLengthPlaneAndPos():法線size がゼロ近いです%f %f %f\n", nx, ny, nz); PRINTF(VT_RST); return 0.0f; } return fabsf(Math3D_DistPlaneToPos(nx, ny, nz, originDist, p)); } /* * Calculates the signed distance from a point `p` to a plane defined as * `nx`, `ny`, `nz`, and `originDist` */ f32 Math3D_DistPlaneToPos(f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* p) { f32 normMagnitude; normMagnitude = sqrtf(SQ(nx) + SQ(ny) + SQ(nz)); if (IS_ZERO(normMagnitude)) { PRINTF(VT_COL(YELLOW, BLACK)); // "Math3DSignedLengthPlaneAndPos(): Normal size is close to zero %f %f %f" PRINTF("Math3DSignedLengthPlaneAndPos():法線size がゼロ近いです%f %f %f\n", nx, ny, nz); PRINTF(VT_RST); return 0.0f; } return Math3D_Planef(nx, ny, nz, originDist, p) / normMagnitude; } /** * Checks if the point defined by (`z`,`x`) is within distance of the triangle defined from `v0`,`v1`, and `v2` */ s32 Math3D_TriChkPointParaYImpl(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 z, f32 x, f32 detMax, f32 chkDist, f32 ny) { f32 detv0v1; f32 detv1v2; f32 detv2v0; f32 distToEdgeSq; f32 chkDistSq; // first check if the point is within range of the triangle. if (!Math3D_CirSquareVsTriSquare(v0->z, v0->x, v1->z, v1->x, v2->z, v2->x, z, x, chkDist)) { return false; } // check if the point is within `chkDist` units of any vertex of the triangle. chkDistSq = SQ(chkDist); if (((SQ(v0->z - z) + SQ(v0->x - x)) < chkDistSq) || ((SQ(v1->z - z) + SQ(v1->x - x)) < chkDistSq) || ((SQ(v2->z - z) + SQ(v2->x - x)) < chkDistSq)) { return true; } // Calculate the determinant of each face of the triangle to the point. // If all the of determinants are within abs(`detMax`), return true. detv0v1 = ((v0->z - z) * (v1->x - x)) - ((v0->x - x) * (v1->z - z)); detv1v2 = ((v1->z - z) * (v2->x - x)) - ((v1->x - x) * (v2->z - z)); detv2v0 = ((v2->z - z) * (v0->x - x)) - ((v2->x - x) * (v0->z - z)); if (((detMax >= detv0v1) && (detMax >= detv1v2) && (detMax >= detv2v0)) || ((-detMax <= detv0v1) && (-detMax <= detv1v2) && (-detMax <= detv2v0))) { return true; } if (fabsf(ny) > 0.5f) { // Do a check on each face of the triangle, if the point is within `chkDist` units return true. if (Math3D_PointDistSqToLine2D(z, x, v0->z, v0->x, v1->z, v1->x, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) { return true; } if (Math3D_PointDistSqToLine2D(z, x, v1->z, v1->x, v2->z, v2->x, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) { return true; } if (Math3D_PointDistSqToLine2D(z, x, v2->z, v2->x, v0->z, v0->x, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) { return true; } } return false; } s32 Math3D_TriChkPointParaYDeterminate(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 z, f32 x, f32 detMax, f32 ny) { return Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, detMax, 1.0f, ny); } s32 Math3D_TriChkPointParaYSlopedY(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 z, f32 x) { return Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 300.0f, 1.0f, 0.6f); } /** * Performs the triangle and point check parallel to the Y axis, outputs the y coordinate of the point to `yIntersect` */ s32 Math3D_TriChkPointParaYIntersectDist(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 z, f32 x, f32* yIntersect, f32 chkDist) { if (IS_ZERO(ny)) { return false; } if (Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 300.0f, chkDist, ny)) { *yIntersect = (f32)((((-nx * x) - (nz * z)) - originDist) / ny); return true; } return false; } s32 Math3D_TriChkPointParaYIntersectInsideTri(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 z, f32 x, f32* yIntersect, f32 chkDist) { if (IS_ZERO(ny)) { return false; } if (Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 0.0f, chkDist, ny)) { *yIntersect = (f32)((((-nx * x) - (nz * z)) - originDist) / ny); return true; } return false; } s32 Math3D_TriChkPointParaY(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 ny, f32 z, f32 x) { if (IS_ZERO(ny)) { return false; } if (Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 300.0f, 1.0f, ny)) { return true; } return false; } s32 Math3D_TriChkLineSegParaYIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 z, f32 x, f32* yIntersect, f32 y0, f32 y1) { f32 pointADist; f32 pointBDist; Vec3f planePos; if (IS_ZERO(ny)) { return false; } planePos.x = x; planePos.y = y0; planePos.z = z; pointADist = Math3D_Planef(nx, ny, nz, originDist, &planePos); planePos.y = y1; pointBDist = Math3D_Planef(nx, ny, nz, originDist, &planePos); if (((pointADist > 0.0f) && (pointBDist > 0.0f)) || ((pointADist < 0.0f) && (pointBDist < 0.0f))) { return false; } if (Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 300.0f, 1.0f, ny)) { *yIntersect = (((-nx * x) - (nz * z)) - originDist) / ny; return true; } return false; } s32 Math3D_TriChkPointParaYDist(Vec3f* v0, Vec3f* v1, Vec3f* v2, Plane* plane, f32 z, f32 x, f32 chkDist) { if (IS_ZERO(plane->normal.y)) { return false; } if (Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 0.0f, chkDist, plane->normal.y)) { return true; } return false; } s32 Math3D_TriChkPointParaXImpl(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 y, f32 z, f32 detMax, f32 chkDist, f32 nx) { f32 detv0v1; f32 detv1v2; f32 detv2v0; f32 distToEdgeSq; f32 chkDistSq; if (!Math3D_CirSquareVsTriSquare(v0->y, v0->z, v1->y, v1->z, v2->y, v2->z, y, z, chkDist)) { return false; } chkDistSq = SQ(chkDist); if (((SQ(v0->y - y) + SQ(v0->z - z)) < chkDistSq) || ((SQ(v1->y - y) + SQ(v1->z - z)) < chkDistSq) || ((SQ(v2->y - y) + SQ(v2->z - z)) < chkDistSq)) { return true; } detv0v1 = ((v0->y - y) * (v1->z - z)) - ((v0->z - z) * (v1->y - y)); detv1v2 = ((v1->y - y) * (v2->z - z)) - ((v1->z - z) * (v2->y - y)); detv2v0 = ((v2->y - y) * (v0->z - z)) - ((v2->z - z) * (v0->y - y)); if (((detv0v1 <= detMax) && (detv1v2 <= detMax) && (detv2v0 <= detMax)) || ((-detMax <= detv0v1) && (-detMax <= detv1v2) && (-detMax <= detv2v0))) { return true; } if (fabsf(nx) > 0.5f) { if (Math3D_PointDistSqToLine2D(y, z, v0->y, v0->z, v1->y, v1->z, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) { return true; } if (Math3D_PointDistSqToLine2D(y, z, v1->y, v1->z, v2->y, v2->z, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) { return true; } if (Math3D_PointDistSqToLine2D(y, z, v2->y, v2->z, v0->y, v0->z, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) { return true; } } return false; } s32 Math3D_TriChkPointParaXDeterminate(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 y, f32 z, f32 detMax, f32 nx) { return Math3D_TriChkPointParaXImpl(v0, v1, v2, y, z, detMax, 1.0f, nx); } s32 Math3D_TriChkPointParaXIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 y, f32 z, f32* xIntersect) { if (IS_ZERO(nx)) { return false; } if (Math3D_TriChkPointParaXImpl(v0, v1, v2, y, z, 300.0f, 1.0f, nx)) { *xIntersect = (((-ny * y) - (nz * z)) - originDist) / nx; return true; } return false; } s32 Math3D_TriChkPointParaX(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 y, f32 z) { if (IS_ZERO(nx)) { return false; } if (Math3D_TriChkPointParaXImpl(v0, v1, v2, y, z, 300.0f, 1.0f, nx)) { return true; } return false; } s32 Math3D_TriChkLineSegParaXIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 y, f32 z, f32* xIntersect, f32 x0, f32 x1) { static Vec3f planePos; f32 pointADist; f32 pointBDist; if (IS_ZERO(nx)) { return false; } planePos.x = x0; planePos.y = y; planePos.z = z; pointADist = Math3D_Planef(nx, ny, nz, originDist, &planePos); planePos.x = x1; pointBDist = Math3D_Planef(nx, ny, nz, originDist, &planePos); if (((pointADist > 0.0f) && (pointBDist > 0.0f)) || ((pointADist < 0.0f) && (pointBDist < 0.0f))) { return false; } if (Math3D_TriChkPointParaXImpl(v0, v1, v2, y, z, 300.0f, 1.0f, nx)) { *xIntersect = (((-ny * y) - (nz * z)) - originDist) / nx; return true; } return false; } s32 Math3D_TriChkPointParaXDist(Vec3f* v0, Vec3f* v1, Vec3f* v2, Plane* plane, f32 y, f32 z, f32 chkDist) { if (IS_ZERO(plane->normal.x)) { return false; } if (Math3D_TriChkPointParaXImpl(v0, v1, v2, y, z, 0.0f, chkDist, plane->normal.x)) { return true; } return false; } s32 Math3D_TriChkPointParaZImpl(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 x, f32 y, f32 detMax, f32 chkDist, f32 nz) { f32 detv0v1; f32 detv1v2; f32 detv2v0; f32 distToEdgeSq; f32 chkDistSq; if (!Math3D_CirSquareVsTriSquare(v0->x, v0->y, v1->x, v1->y, v2->x, v2->y, x, y, chkDist)) { return false; } chkDistSq = SQ(chkDist); if (((SQ(x - v0->x) + SQ(y - v0->y)) < chkDistSq) || ((SQ(x - v1->x) + SQ(y - v1->y)) < chkDistSq) || ((SQ(x - v2->x) + SQ(y - v2->y)) < chkDistSq)) { // Distance from any vertex to a point is less than chkDist return true; } detv0v1 = ((v0->x - x) * (v1->y - y)) - ((v0->y - y) * (v1->x - x)); detv1v2 = ((v1->x - x) * (v2->y - y)) - ((v1->y - y) * (v2->x - x)); detv2v0 = ((v2->x - x) * (v0->y - y)) - ((v2->y - y) * (v0->x - x)); if (((detMax >= detv0v1) && (detMax >= detv1v2) && (detMax >= detv2v0)) || ((-detMax <= detv0v1) && (-detMax <= detv1v2) && (-detMax <= detv2v0))) { return true; } if (fabsf(nz) > 0.5f) { if (Math3D_PointDistSqToLine2D(x, y, v0->x, v0->y, v1->x, v1->y, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) { return true; } if (Math3D_PointDistSqToLine2D(x, y, v1->x, v1->y, v2->x, v2->y, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) { return true; } if (Math3D_PointDistSqToLine2D(x, y, v2->x, v2->y, v0->x, v0->y, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) { return true; } } return false; } s32 Math3D_TriChkPointParaZDeterminate(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 x, f32 y, f32 detMax, f32 nz) { return Math3D_TriChkPointParaZImpl(v0, v1, v2, x, y, detMax, 1.0f, nz); } s32 Math3D_TriChkPointParaZIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 x, f32 y, f32* zIntersect) { if (IS_ZERO(nz)) { return false; } if (Math3D_TriChkPointParaZImpl(v0, v1, v2, x, y, 300.0f, 1.0f, nz)) { *zIntersect = (f32)((((-nx * x) - (ny * y)) - originDist) / nz); return true; } return false; } s32 Math3D_TriChkPointParaZ(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nz, f32 x, f32 y) { if (IS_ZERO(nz)) { return false; } if (Math3D_TriChkPointParaZImpl(v0, v1, v2, x, y, 300.0f, 1.0f, nz)) { return true; } return false; } s32 Math3D_TriChkLineSegParaZIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 x, f32 y, f32* zIntersect, f32 z0, f32 z1) { static Vec3f planePos; f32 pointADist; f32 pointBDist; if (IS_ZERO(nz)) { return false; } planePos.x = x; planePos.y = y; planePos.z = z0; pointADist = Math3D_Planef(nx, ny, nz, originDist, &planePos); planePos.z = z1; pointBDist = Math3D_Planef(nx, ny, nz, originDist, &planePos); if (((pointADist > 0.0f) && (pointBDist > 0.0f)) || ((pointADist < 0.0f) && (pointBDist < 0.0f))) { // points on the line segment are on the same side of the plane return false; } if (Math3D_TriChkPointParaZImpl(v0, v1, v2, x, y, 300.0f, 1.0f, nz)) { *zIntersect = (((-nx * x) - (ny * y)) - originDist) / nz; return true; } return false; } s32 Math3D_TriChkLineSegParaZDist(Vec3f* v0, Vec3f* v1, Vec3f* v2, Plane* plane, f32 x, f32 y, f32 chkDist) { if (IS_ZERO(plane->normal.z)) { return false; } if (Math3D_TriChkPointParaZImpl(v0, v1, v2, x, y, 0.0f, chkDist, plane->normal.z)) { return true; } return false; } s32 Math3D_LineSegFindPlaneIntersect(f32 pointADist, f32 pointBDist, Vec3f* pointA, Vec3f* pointB, Vec3f* intersect) { f32 distDiff; distDiff = pointADist - pointBDist; if (IS_ZERO(distDiff)) { // both points lie on the plane. *intersect = *pointB; return false; } if (pointADist == 0.0f) { // pointA is on the plane *intersect = *pointA; } else if (pointBDist == 0.0f) { // pointB is on the plane *intersect = *pointB; } else { // place the point at the intersection point. Math3D_LineSplitRatio(pointA, pointB, pointADist / distDiff, intersect); } return true; } /** * Determines if the line segment from `linePointA` to `linePointB` crosses the plane * from `nx` + `ny` + `nz` + `originDist` = 0. If fromFront is set, then detection will only * be true if point A crosses from the front of the plane */ s32 Math3D_LineSegVsPlane(f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* linePointA, Vec3f* linePointB, Vec3f* intersect, s32 fromFront) { f32 pointADist; f32 pointBDist; pointADist = Math3D_Planef(nx, ny, nz, originDist, linePointA); pointBDist = Math3D_Planef(nx, ny, nz, originDist, linePointB); if ((pointADist * pointBDist) > 0.0f) { *intersect = *linePointB; return false; } if (fromFront && (pointADist < 0.0f) && (pointBDist > 0.0f)) { *intersect = *linePointB; return false; } return Math3D_LineSegFindPlaneIntersect(pointADist, pointBDist, linePointA, linePointB, intersect); } /* * Determines if the line formed by `linePointA` and `linePointB` intersect with Triangle formed from * vertices `v0`, `v1`, and `v2` with normal vector `nx`, `ny`, and `nz` with plane distance from origin * `originDist` Outputs the intersection point at to `intersect` * Returns 1 if the line intersects with the triangle, 0 otherwise */ s32 Math3D_TriLineIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* linePointA, Vec3f* linePointB, Vec3f* intersect, s32 fromFront) { if (!Math3D_LineSegVsPlane(nx, ny, nz, originDist, linePointA, linePointB, intersect, fromFront)) { return false; } if (((nx == 0.0f) || (Math3D_TriChkPointParaX(v0, v1, v2, nx, intersect->y, intersect->z))) && ((ny == 0.0f) || (Math3D_TriChkPointParaY(v0, v1, v2, ny, intersect->z, intersect->x))) && ((nz == 0.0f) || (Math3D_TriChkPointParaZ(v0, v1, v2, nz, intersect->x, intersect->y)))) { return true; } *intersect = *linePointB; return false; } /* * Creates a TriNorm output to `tri`, and calculates the normal vector and plane from vertices * `va`, `vb`, and `vc` */ void Math3D_TriNorm(TriNorm* tri, Vec3f* va, Vec3f* vb, Vec3f* vc) { tri->vtx[0] = *va; tri->vtx[1] = *vb; tri->vtx[2] = *vc; Math3D_DefPlane(va, vb, vc, &tri->plane.normal.x, &tri->plane.normal.y, &tri->plane.normal.z, &tri->plane.originDist); } /* * Determines if point `point` lies within `sphere` */ s32 Math3D_PointInSph(Sphere16* sphere, Vec3f* point) { if (Math3D_DistXYZ16toF(&sphere->center, point) < sphere->radius) { return true; } return false; } /** * Determines the distance from point (`x0`,`y0`) to the line formed from (`x1`,`y1`) and (`x2`,`y2`) * Distance squared is output to `lineLenSq`, returns true if the point perpendicular from (`x0`,`y0`) * is contained within the segment between (`x1`,`y1`) and (`x2`,`y2`) */ s32 Math3D_PointDistSqToLine2D(f32 x0, f32 y0, f32 x1, f32 y1, f32 x2, f32 y2, f32* lineLenSq) { static Vec3f perpendicularPoint; f32 perpendicularRatio; f32 xDiff; f32 distSq; f32 yDiff; s32 ret = false; xDiff = x2 - x1; yDiff = y2 - y1; distSq = SQ(xDiff) + SQ(yDiff); if (IS_ZERO(distSq)) { *lineLenSq = 0.0f; return false; } perpendicularRatio = (((x0 - x1) * xDiff) + (y0 - y1) * yDiff) / distSq; if (perpendicularRatio >= 0.0f && perpendicularRatio <= 1.0f) { ret = true; } perpendicularPoint.x = (xDiff * perpendicularRatio) + x1; perpendicularPoint.y = (yDiff * perpendicularRatio) + y1; *lineLenSq = SQ(perpendicularPoint.x - x0) + SQ(perpendicularPoint.y - y0); return ret; } /** * Determines if the line `line` is touching the sphere `sphere` at any point in the line. */ s32 Math3D_LineVsSph(Sphere16* sphere, Linef* line) { static Vec3f sphLinePerpendicularPoint; Vec3f lineDiff; f32 temp_f0_2; f32 lineLenSq; if ((Math3D_PointInSph(sphere, &line->a)) || (Math3D_PointInSph(sphere, &line->b))) { // either point of the line is in the sphere. return true; } lineDiff.x = line->b.x - line->a.x; lineDiff.y = line->b.y - line->a.y; lineDiff.z = line->b.z - line->a.z; lineLenSq = SQ(lineDiff.x) + SQ(lineDiff.y) + SQ(lineDiff.z); if (IS_ZERO(lineLenSq)) { // line length is "0" return false; } temp_f0_2 = ((((sphere->center.x - line->a.x) * lineDiff.x) + ((sphere->center.y - line->a.y) * lineDiff.y)) + ((sphere->center.z - line->a.z) * lineDiff.z)) / lineLenSq; if ((temp_f0_2 < 0.0f) || (temp_f0_2 > 1.0f)) { return false; } sphLinePerpendicularPoint.x = (lineDiff.x * temp_f0_2) + line->a.x; sphLinePerpendicularPoint.y = (lineDiff.y * temp_f0_2) + line->a.y; sphLinePerpendicularPoint.z = (lineDiff.z * temp_f0_2) + line->a.z; if (SQ(sphLinePerpendicularPoint.x - sphere->center.x) + SQ(sphLinePerpendicularPoint.y - sphere->center.y) + SQ(sphLinePerpendicularPoint.z - sphere->center.z) <= SQ((f32)sphere->radius)) { return true; } return false; } /** * Gets the surface point of `sphere` intersecting with `tri` generated from the line formed from the * sphere's surface to the midpoint of the line formed from the first two vertices of the tri */ void Math3D_GetSphVsTriIntersectPoint(Sphere16* sphere, TriNorm* tri, Vec3f* intersectPoint) { static Vec3f v0v1Center; static Vec3f sphereCenter; f32 dist; f32 splitRatio; v0v1Center.x = ((tri->vtx[0].x + tri->vtx[1].x) * 0.5f); v0v1Center.y = ((tri->vtx[0].y + tri->vtx[1].y) * 0.5f); v0v1Center.z = ((tri->vtx[0].z + tri->vtx[1].z) * 0.5f); sphereCenter.x = sphere->center.x; sphereCenter.y = sphere->center.y; sphereCenter.z = sphere->center.z; dist = Math3D_Vec3f_DistXYZ(&v0v1Center, &sphereCenter); // Distance from the sphere's center to the center of the line formed from v0->v1 if (IS_ZERO(dist)) { intersectPoint->x = sphereCenter.x; intersectPoint->y = sphereCenter.y; intersectPoint->z = sphereCenter.z; return; } splitRatio = sphere->radius / dist; Math3D_LineSplitRatio(&sphereCenter, &v0v1Center, splitRatio, intersectPoint); } /** * Determines if `sphere` and `tri` and touching, and outputs the intersection point to `intersectPoint` */ s32 Math3D_TriVsSphIntersect(Sphere16* sphere, TriNorm* tri, Vec3f* intersectPoint) { static Linef triTestLine; static Vec3f sphereCenter; static Vec3f sphPlanePos; f32 radius; f32 nx; f32 ny; f32 nz; f32 planeDist; sphereCenter.x = sphere->center.x; sphereCenter.y = sphere->center.y; sphereCenter.z = sphere->center.z; radius = sphere->radius; if (!Math3D_SphCubeVsTriCube(&tri->vtx[0], &tri->vtx[1], &tri->vtx[2], &sphereCenter, radius)) { return false; } planeDist = Math3D_UDistPlaneToPos(tri->plane.normal.x, tri->plane.normal.y, tri->plane.normal.z, tri->plane.originDist, &sphereCenter); if (radius < planeDist) { // the point that lies within the plane of the triangle which is perpendicular to the sphere's center is more // than the radius of the sphere, the plane never crosses the sphere. return false; } // tests if any of the edges of the triangle are intersecting the sphere triTestLine.a = tri->vtx[0]; triTestLine.b = tri->vtx[1]; if (Math3D_LineVsSph(sphere, &triTestLine)) { Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint); return true; } triTestLine.a = tri->vtx[1]; triTestLine.b = tri->vtx[2]; if (Math3D_LineVsSph(sphere, &triTestLine)) { Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint); return true; } triTestLine.a = tri->vtx[2]; triTestLine.b = tri->vtx[0]; if (Math3D_LineVsSph(sphere, &triTestLine)) { Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint); return true; } nx = tri->plane.normal.x * planeDist; ny = tri->plane.normal.y * planeDist; nz = tri->plane.normal.z * planeDist; if (Math3D_Planef(tri->plane.normal.x, tri->plane.normal.y, tri->plane.normal.z, tri->plane.originDist, &sphereCenter) > 0.0f) { sphPlanePos.x = sphereCenter.x - nx; sphPlanePos.y = sphereCenter.y - ny; sphPlanePos.z = sphereCenter.z - nz; } else { sphPlanePos.x = sphereCenter.x + nx; sphPlanePos.y = sphereCenter.y + ny; sphPlanePos.z = sphereCenter.z + nz; } if (fabsf(tri->plane.normal.y) > 0.5f) { if (Math3D_TriChkPointParaYDeterminate(&tri->vtx[0], &tri->vtx[1], &tri->vtx[2], sphPlanePos.z, sphPlanePos.x, 0.0f, tri->plane.normal.y)) { Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint); return true; } } else if (fabsf(tri->plane.normal.x) > 0.5f) { if (Math3D_TriChkPointParaXDeterminate(&tri->vtx[0], &tri->vtx[1], &tri->vtx[2], sphPlanePos.y, sphPlanePos.z, 0.0f, tri->plane.normal.x)) { Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint); return true; } } else if (Math3D_TriChkPointParaZDeterminate(&tri->vtx[0], &tri->vtx[1], &tri->vtx[2], sphPlanePos.x, sphPlanePos.y, 0.0f, tri->plane.normal.z)) { Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint); return true; } return false; } /* * Checks if point `point` is within cylinder `cyl` * Returns 1 if the point is inside the cylinder, 0 otherwise. */ s32 Math3D_PointInCyl(Cylinder16* cyl, Vec3f* point) { f32 bottom; f32 top; f32 x; f32 z; x = cyl->pos.x - point->x; z = cyl->pos.z - point->z; bottom = (f32)cyl->pos.y + cyl->yShift; top = cyl->height + bottom; if ((SQ(x) + SQ(z)) < SQ(cyl->radius) && (bottom < point->y) && (point->y < top)) { return true; } else { return false; } } s32 Math3D_CylVsLineSeg(Cylinder16* cyl, Vec3f* linePointA, Vec3f* linePointB, Vec3f* intersectA, Vec3f* intersectB) { Vec3f cylToPtA; Vec3f cylToPtB; Vec3f ptAToPtB; f32 fracA; f32 fracB; f32 fracBase; f32 zero = 0.0f; f32 pad; f32 cylRadiusSq; f32 radSqDiff; f32 distCent2; f32 dot2AB; s32 sideIntA; s32 sideIntB; s32 intBeyondA; s32 intBeyondB; s32 intFlags = 0; Vec3f intPts[4]; s32 count; s32 i; if (Math3D_PointInCyl(cyl, linePointA) && Math3D_PointInCyl(cyl, linePointB)) { // both points are in the cylinder *intersectA = *linePointA; *intersectB = *linePointB; return 2; } cylToPtA.x = linePointA->x - cyl->pos.x; cylToPtA.y = linePointA->y - cyl->pos.y - cyl->yShift; cylToPtA.z = linePointA->z - cyl->pos.z; cylToPtB.x = linePointB->x - cyl->pos.x; cylToPtB.y = linePointB->y - cyl->pos.y - cyl->yShift; cylToPtB.z = linePointB->z - cyl->pos.z; Math_Vec3f_Diff(&cylToPtB, &cylToPtA, &ptAToPtB); cylRadiusSq = SQ(cyl->radius); /** * This section checks for intersections with the cylinder's base and top */ if (!IS_ZERO(ptAToPtB.y)) { // fraction of length along AB to reach y = 0 fracBase = -cylToPtA.y / ptAToPtB.y; if ((0.0f <= fracBase) && (fracBase <= 1.0f)) { f32 baseIntX = (ptAToPtB.x * fracBase) + cylToPtA.x; f32 baseIntZ = (ptAToPtB.z * fracBase) + cylToPtA.z; if (SQ(baseIntX) + SQ(baseIntZ) < cylRadiusSq) { // adds base intersection point to intPts and sets its flag intPts[0].x = cyl->pos.x + baseIntX; intPts[0].y = (f32)cyl->pos.y + cyl->yShift; intPts[0].z = cyl->pos.z + baseIntZ; intFlags |= 1; } } // fraction of length along AB to reach y = cyl->height fracA = (cyl->height - cylToPtA.y) / ptAToPtB.y; if ((0.0f <= fracA) && (fracA <= 1.0f)) { f32 topIntX = ptAToPtB.x * fracA + cylToPtA.x; f32 topIntZ = ptAToPtB.z * fracA + cylToPtA.z; if (SQ(topIntX) + SQ(topIntZ) < cylRadiusSq) { // adds top intersection point to intPts and sets its flag intPts[1].x = cyl->pos.x + topIntX; intPts[1].y = (f32)cyl->pos.y + cyl->yShift + cyl->height; intPts[1].z = cyl->pos.z + topIntZ; intFlags |= 2; } } } /** * This section finds the points of intersection of the infinite line containing AB with the side of the infinite * cylinder containing cyl. Intersection points beyond the bounds of the segment and cylinder are filtered out * afterward. */ radSqDiff = SQXZ(cylToPtA) - cylRadiusSq; if (!IS_ZERO(2.0f * SQXZ(ptAToPtB))) { dot2AB = 2.0f * DOTXZ(ptAToPtB, cylToPtA); if (SQ(dot2AB) < 4.0f * SQXZ(ptAToPtB) * radSqDiff) { // Line's closest xz-approach is outside cylinder. No intersections. return 0; } if (SQ(dot2AB) - (4.0f * SQXZ(ptAToPtB) * radSqDiff) > zero) { sideIntA = sideIntB = 1; } else { // Line is tangent in xz-plane. At most 1 side intersection. sideIntA = 1; sideIntB = 0; } distCent2 = sqrtf(SQ(dot2AB) - (4.0f * SQXZ(ptAToPtB) * radSqDiff)); if (sideIntA == 1) { // fraction of length along AB for side intersection closer to A fracA = (distCent2 - dot2AB) / (2.0f * SQXZ(ptAToPtB)); } if (sideIntB == 1) { // fraction of length along AB for side intersection closer to B fracB = (-dot2AB - distCent2) / (2.0f * SQXZ(ptAToPtB)); } } else if (!IS_ZERO(2.0f * DOTXZ(ptAToPtB, cylToPtA))) { // Used if the line segment is nearly vertical. Unclear what it's calculating. fracA = -radSqDiff / (2.0f * DOTXZ(ptAToPtB, cylToPtA)); sideIntA = 1; sideIntB = 0; } else { return 0; } // checks for intersection points outside the bounds of the segment if (!sideIntB) { if (fracA < 0.0f || 1.0f < fracA) { return 0; } } else { intBeyondA = fracA < 0.0f || 1.0f < fracA; intBeyondB = fracB < 0.0f || 1.0f < fracB; if (intBeyondA && intBeyondB) { return 0; } if (intBeyondA) { sideIntA = 0; } if (intBeyondB) { sideIntB = 0; } } // checks for intersection points outside the bounds of the cylinder if ((sideIntA == 1) && ((fracA * ptAToPtB.y + cylToPtA.y) < 0.0f || cyl->height < (fracA * ptAToPtB.y + cylToPtA.y))) { sideIntA = 0; } if ((sideIntB == 1) && ((fracB * ptAToPtB.y + cylToPtA.y) < 0.0f || cyl->height < (fracB * ptAToPtB.y + cylToPtA.y))) { sideIntB = 0; } if (sideIntA == 0 && sideIntB == 0) { return 0; } // Adds intersection points to intPts and sets side A and side B flags if (sideIntA == 1 && sideIntB == 1) { intPts[2].x = (fracA * ptAToPtB.x + cylToPtA.x) + cyl->pos.x; intPts[2].y = (fracA * ptAToPtB.y + cylToPtA.y) + cyl->pos.y + cyl->yShift; intPts[2].z = (fracA * ptAToPtB.z + cylToPtA.z) + cyl->pos.z; intFlags |= 4; intPts[3].x = (fracB * ptAToPtB.x + cylToPtA.x) + cyl->pos.x; intPts[3].y = (fracB * ptAToPtB.y + cylToPtA.y) + cyl->pos.y + cyl->yShift; intPts[3].z = (fracB * ptAToPtB.z + cylToPtA.z) + cyl->pos.z; intFlags |= 8; } else if (sideIntA == 1) { intPts[2].x = (fracA * ptAToPtB.x + cylToPtA.x) + cyl->pos.x; intPts[2].y = (fracA * ptAToPtB.y + cylToPtA.y) + cyl->pos.y + cyl->yShift; intPts[2].z = (fracA * ptAToPtB.z + cylToPtA.z) + cyl->pos.z; intFlags |= 4; } else if (sideIntB == 1) { intPts[2].x = (fracB * ptAToPtB.x + cylToPtA.x) + cyl->pos.x; intPts[2].y = (fracB * ptAToPtB.y + cylToPtA.y) + cyl->pos.y + cyl->yShift; intPts[2].z = (fracB * ptAToPtB.z + cylToPtA.z) + cyl->pos.z; intFlags |= 4; } /** * Places the found intersection points into intersectA and intersectB. IntersectA is always closer to point A */ for (count = 0, i = 0; i < 4; i++) { if (intFlags & (1 << i)) { if (count == 0) { *intersectA = intPts[i]; } else if (count == 1) { if (Math3D_Vec3fDistSq(intersectA, linePointA) < Math3D_Vec3fDistSq(intersectA, &intPts[i])) { *intersectB = intPts[i]; } else { *intersectB = *intersectA; *intersectA = intPts[i]; } break; } count++; } } return count; } /* * Determines if `cyl` and `tri` are touching. The point of intersection * is placed in `intersect` Returns 1 if they are touching, 0 otherwise. */ s32 Math3D_CylTriVsIntersect(Cylinder16* cyl, TriNorm* tri, Vec3f* intersect) { static Sphere16 topSphere; static Sphere16 bottomSphere; static Vec3f cylIntersectA; static Vec3f cylIntersectB; f32 yIntersect; f32 cylTop; f32 cylBottom; f32 minDistSq; f32 radiusTodistFromCylYIntersectTov0v1; f32 distFromPointAToIntersectASq; Vec3f cylIntersectCenter; Vec3f midpointv0v1; Vec3f diffMidpointIntersect; s32 pad; cylBottom = (f32)cyl->pos.y + cyl->yShift; cylTop = cyl->height + cylBottom; if (((tri->vtx[0].y < cylBottom) && (tri->vtx[1].y < cylBottom) && (tri->vtx[2].y < cylBottom)) || ((cylTop < tri->vtx[0].y) && (cylTop < tri->vtx[1].y) && (cylTop < tri->vtx[2].y))) { // If all of the vertices are below or all of the vertices are above the cylinder. return false; } minDistSq = 1.e38f; if (Math3D_CylVsLineSeg(cyl, &tri->vtx[0], &tri->vtx[1], &cylIntersectA, &cylIntersectB)) { distFromPointAToIntersectASq = Math3D_Vec3fDistSq(&cylIntersectA, &tri->vtx[0]); minDistSq = distFromPointAToIntersectASq; *intersect = cylIntersectA; } if (Math3D_CylVsLineSeg(cyl, &tri->vtx[2], &tri->vtx[1], &cylIntersectA, &cylIntersectB)) { distFromPointAToIntersectASq = Math3D_Vec3fDistSq(&cylIntersectA, &tri->vtx[2]); if (distFromPointAToIntersectASq < minDistSq) { *intersect = cylIntersectA; minDistSq = distFromPointAToIntersectASq; } } if (Math3D_CylVsLineSeg(cyl, &tri->vtx[0], &tri->vtx[2], &cylIntersectA, &cylIntersectB)) { distFromPointAToIntersectASq = Math3D_Vec3fDistSq(&cylIntersectA, &tri->vtx[0]); if (distFromPointAToIntersectASq < minDistSq) { *intersect = cylIntersectA; minDistSq = distFromPointAToIntersectASq; } } if (minDistSq != 1.e38f) { return true; } if (Math3D_TriChkLineSegParaYIntersect(&tri->vtx[0], &tri->vtx[1], &tri->vtx[2], tri->plane.normal.x, tri->plane.normal.y, tri->plane.normal.z, tri->plane.originDist, cyl->pos.z, cyl->pos.x, &yIntersect, cylBottom, cylTop)) { f32 distFromCylYIntersectTov0v1; cylIntersectCenter.x = cyl->pos.x; cylIntersectCenter.y = yIntersect; cylIntersectCenter.z = cyl->pos.z; midpointv0v1.x = (tri->vtx[0].x + tri->vtx[1].x) * 0.5f; midpointv0v1.y = (tri->vtx[0].y + tri->vtx[1].y) * 0.5f; midpointv0v1.z = (tri->vtx[0].z + tri->vtx[1].z) * 0.5f; Math_Vec3f_Diff(&midpointv0v1, &cylIntersectCenter, &diffMidpointIntersect); distFromCylYIntersectTov0v1 = sqrtf(SQ(diffMidpointIntersect.x) + SQ(diffMidpointIntersect.z)); if (IS_ZERO(distFromCylYIntersectTov0v1)) { Math_Vec3f_Copy(intersect, &midpointv0v1); return true; } radiusTodistFromCylYIntersectTov0v1 = cyl->radius / distFromCylYIntersectTov0v1; Math3D_PointOnInfiniteLine(&cylIntersectCenter, &diffMidpointIntersect, radiusTodistFromCylYIntersectTov0v1, intersect); return true; } topSphere.center.x = bottomSphere.center.x = cyl->pos.x; topSphere.center.z = bottomSphere.center.z = cyl->pos.z; topSphere.center.y = cylTop; bottomSphere.center.y = cylBottom; topSphere.radius = bottomSphere.radius = cyl->radius; if ((Math3D_TriVsSphIntersect(&topSphere, tri, intersect)) || (Math3D_TriVsSphIntersect(&bottomSphere, tri, intersect))) { return true; } return false; } /* * Determines if `cyl` and `tri` are touching. */ s32 Math3D_CylVsTri(Cylinder16* cyl, TriNorm* tri) { Vec3f intersect; return Math3D_CylTriVsIntersect(cyl, tri, &intersect); } /* * Determines if two spheres are touching. */ s32 Math3D_SphVsSph(Sphere16* sphereA, Sphere16* sphereB) { f32 overlapSize; return Math3D_SphVsSphOverlap(sphereA, sphereB, &overlapSize); } /* * Determines if two spheres are touching. The amount that they're overlapping is placed in `overlapSize` */ s32 Math3D_SphVsSphOverlap(Sphere16* sphereA, Sphere16* sphereB, f32* overlapSize) { f32 centerDist; return Math3D_SphVsSphOverlapCenterDist(sphereA, sphereB, overlapSize, ¢erDist); } /* * Determines if two spheres are touching The distance from the centers is placed in `centerDist`, * and the amount that they're overlapping is placed in `overlapSize` */ s32 Math3D_SphVsSphOverlapCenterDist(Sphere16* sphereA, Sphere16* sphereB, f32* overlapSize, f32* centerDist) { Vec3f diff; diff.x = (f32)sphereA->center.x - (f32)sphereB->center.x; diff.y = (f32)sphereA->center.y - (f32)sphereB->center.y; diff.z = (f32)sphereA->center.z - (f32)sphereB->center.z; *centerDist = sqrt(SQ(diff.x) + SQ(diff.y) + SQ(diff.z)); *overlapSize = (((f32)sphereA->radius + (f32)sphereB->radius) - *centerDist); if (*overlapSize > 0.008f) { return true; } *overlapSize = 0.0f; return false; } /** * Checks if `sph` and `cyl` are touching, output the amount of xz overlap to `overlapSize` */ s32 Math3D_SphVsCylOverlap(Sphere16* sph, Cylinder16* cyl, f32* overlapSize) { f32 centerDist; return Math3D_SphVsCylOverlapCenterDist(sph, cyl, overlapSize, ¢erDist); } /** * Checks if `sph` and `cyl` are touching, output the xz distance of the centers to `centerDist`, and the amount of * xz overlap to `overlapSize` */ s32 Math3D_SphVsCylOverlapCenterDist(Sphere16* sph, Cylinder16* cyl, f32* overlapSize, f32* centerDist) { static Cylinderf cylf; static Spheref sphf; f32 x; f32 z; f32 combinedRadius; f32 cylBottom; f32 cylTop; f32 sphBottom; f32 sphTop; if (sph->radius <= 0 || cyl->radius <= 0) { // either radius is 0 return false; } sphf.center.y = sph->center.y; sphf.radius = sph->radius; cylf.pos.y = cyl->pos.y; cylf.yShift = cyl->yShift; cylf.height = cyl->height; x = (f32)sph->center.x - cyl->pos.x; z = (f32)sph->center.z - cyl->pos.z; combinedRadius = (f32)sph->radius + cyl->radius; *centerDist = sqrtf(SQ(x) + SQ(z)); if (combinedRadius < *centerDist) { // if the combined radii is less than the distance to the centers, they cannot be touching. return false; } cylBottom = (cylf.pos.y + cylf.yShift); cylTop = cylBottom + cylf.height; sphBottom = sphf.center.y - sphf.radius; sphTop = sphf.center.y + sphf.radius; if ((sphTop >= cylBottom) && (sphBottom <= cylTop)) { // if the cylinder and sphere are intersecting on the xz plane, check if they're intersecting on // the y axis. *overlapSize = combinedRadius - *centerDist; return true; } return false; } /** * Checks if `ca` and `cb` are touching, output the amount of xz overlap to `overlapSize` */ s32 Math3D_CylVsCylOverlap(Cylinder16* ca, Cylinder16* cb, f32* overlapSize) { f32 xzDist; return Math3D_CylVsCylOverlapCenterDist(ca, cb, overlapSize, &xzDist); } /** * Checks if `ca` and `cb` are touching, output the xz distance of the centers to `centerDist`, and the amount of * xz overlap to `overlapSize` */ s32 Math3D_CylVsCylOverlapCenterDist(Cylinder16* ca, Cylinder16* cb, f32* overlapSize, f32* centerDist) { static Cylinderf caf; static Cylinderf cbf; Math_Vec3s_ToVec3f(&caf.pos, &ca->pos); caf.radius = ca->radius; caf.yShift = ca->yShift; caf.height = ca->height; Math_Vec3s_ToVec3f(&cbf.pos, &cb->pos); cbf.radius = cb->radius; cbf.yShift = cb->yShift; cbf.height = cb->height; *centerDist = sqrtf(SQ(caf.pos.x - cbf.pos.x) + SQ(caf.pos.z - cbf.pos.z)); // The combined radii are within the xz distance if ((caf.radius + cbf.radius) < *centerDist) { return false; } // top of ca < bottom of cb or top of cb < bottom of ca if (((caf.pos.y + caf.yShift) + caf.height) < (cbf.pos.y + cbf.yShift) || (((cbf.pos.y + cbf.yShift) + cbf.height) < (caf.pos.y + caf.yShift))) { return false; } *overlapSize = caf.radius + cbf.radius - *centerDist; return true; } /* * Determines if triangle `ta` intersects with triangle `tb` the point of * intersection is output to `intersect. * Returns 1 is the triangles intersect, 0 otherwise */ s32 Math3D_TriVsTriIntersect(TriNorm* ta, TriNorm* tb, Vec3f* intersect) { f32 dist0; f32 dist1; f32 dist2; dist0 = Math3D_Plane(&ta->plane, &tb->vtx[0]); dist1 = Math3D_Plane(&ta->plane, &tb->vtx[1]); dist2 = Math3D_Plane(&ta->plane, &tb->vtx[2]); if (((dist0 > 0.0f) && (dist1 > 0.0f) && (dist2 > 0.0f)) || (((dist0 < 0.0f) && (dist1 < 0.0f)) && (dist2 < 0.0f))) { return false; } dist0 = Math3D_Plane(&tb->plane, &ta->vtx[0]); dist1 = Math3D_Plane(&tb->plane, &ta->vtx[1]); dist2 = Math3D_Plane(&tb->plane, &ta->vtx[2]); if ((((dist0 > 0.0f) && (dist1 > 0.0f)) && (dist2 > 0.0f)) || ((dist0 < 0.0f) && (dist1 < 0.0f) && (dist2 < 0.0f))) { return false; } if (Math3D_TriLineIntersect(&tb->vtx[0], &tb->vtx[1], &tb->vtx[2], tb->plane.normal.x, tb->plane.normal.y, tb->plane.normal.z, tb->plane.originDist, &ta->vtx[0], &ta->vtx[1], intersect, 0)) { return true; } if (Math3D_TriLineIntersect(&tb->vtx[0], &tb->vtx[1], &tb->vtx[2], tb->plane.normal.x, tb->plane.normal.y, tb->plane.normal.z, tb->plane.originDist, &ta->vtx[1], &ta->vtx[2], intersect, 0)) { return true; } if (Math3D_TriLineIntersect(&tb->vtx[0], &tb->vtx[1], &tb->vtx[2], tb->plane.normal.x, tb->plane.normal.y, tb->plane.normal.z, tb->plane.originDist, &ta->vtx[2], &ta->vtx[0], intersect, 0)) { return true; } if (Math3D_TriLineIntersect(&ta->vtx[0], &ta->vtx[1], &ta->vtx[2], ta->plane.normal.x, ta->plane.normal.y, ta->plane.normal.z, ta->plane.originDist, &tb->vtx[0], &tb->vtx[1], intersect, 0) == 1) { return true; } if (Math3D_TriLineIntersect(&ta->vtx[0], &ta->vtx[1], &ta->vtx[2], ta->plane.normal.x, ta->plane.normal.y, ta->plane.normal.z, ta->plane.originDist, &tb->vtx[1], &tb->vtx[2], intersect, 0) == 1) { return true; } if (Math3D_TriLineIntersect(&ta->vtx[0], &ta->vtx[1], &ta->vtx[2], ta->plane.normal.x, ta->plane.normal.y, ta->plane.normal.z, ta->plane.originDist, &tb->vtx[2], &tb->vtx[0], intersect, 0) == 1) { return true; } return false; } s32 Math3D_XZInSphere(Sphere16* sphere, f32 x, f32 z) { f32 xDiff; f32 zDiff; xDiff = sphere->center.x - x; zDiff = sphere->center.z - z; if ((SQ(xDiff) + SQ(zDiff)) <= SQ(sphere->radius)) { return true; } return false; } s32 Math3D_XYInSphere(Sphere16* sphere, f32 x, f32 y) { f32 xDiff; f32 yDiff; xDiff = sphere->center.x - x; yDiff = sphere->center.y - y; if ((SQ(xDiff) + SQ(yDiff)) <= SQ(sphere->radius)) { return true; } return false; } s32 Math3D_YZInSphere(Sphere16* sphere, f32 y, f32 z) { f32 yDiff; f32 zDiff; yDiff = sphere->center.y - y; zDiff = sphere->center.z - z; if ((SQ(yDiff) + SQ(zDiff)) <= SQ(sphere->radius)) { return true; } return false; } #if OOT_DEBUG void Math3D_DrawSphere(PlayState* play, Sphere16* sph) { } void Math3D_DrawCylinder(PlayState* play, Cylinder16* cyl) { } #endif