mirror of
https://github.com/zeldaret/oot.git
synced 2024-11-14 05:19:36 +00:00
174af7384d
* cleanup libultra * fixes - use quotes instead of <> for includes - add macros for zelda specific thread priorities - fix Makefile - properly format the remaining pfs structs * fix button macros + add CHECK_BTN_ANY/CHECK_BTN_ALL * remove ULTRA_ABS * fix includes * update z_player.c/z_lib.c + run format.sh * merge upstream/master * fix include in En_Goroiwa * fix includes
160 lines
2.9 KiB
C
160 lines
2.9 KiB
C
#include "global.h"
|
|
#include "fp.h"
|
|
|
|
s32 use_cfrac;
|
|
|
|
f32 Math_tanf(f32 x) {
|
|
f32 sin = sinf(x);
|
|
f32 cos = cosf(x);
|
|
return sin / cos;
|
|
}
|
|
|
|
f32 Math_floorf(f32 x) {
|
|
return floorf(x);
|
|
}
|
|
|
|
f32 Math_ceilf(f32 x) {
|
|
return ceilf(x);
|
|
}
|
|
|
|
f32 Math_roundf(f32 x) {
|
|
return roundf(x);
|
|
}
|
|
|
|
f32 Math_truncf(f32 x) {
|
|
return truncf(x);
|
|
}
|
|
|
|
f32 Math_nearbyintf(f32 x) {
|
|
return nearbyintf(x);
|
|
}
|
|
|
|
/* Arctangent approximation using a Taylor series (one quadrant) */
|
|
f32 Math_atanf_taylor_q(f32 x) {
|
|
static const f32 coeffs[] = {
|
|
-1.f / 3, +1.f / 5, -1.f / 7, +1.f / 9, -1.f / 11, +1.f / 13, -1.f / 15, +1.f / 17, 0.f,
|
|
};
|
|
|
|
f32 poly = x;
|
|
f32 sq = SQ(x);
|
|
f32 exp = x * sq;
|
|
const f32* c = coeffs;
|
|
f32 term;
|
|
|
|
while (1) {
|
|
term = *c++ * exp;
|
|
if (poly + term == poly) {
|
|
break;
|
|
}
|
|
poly = poly + term;
|
|
exp = exp * sq;
|
|
}
|
|
|
|
return poly;
|
|
}
|
|
|
|
/* Ditto for two quadrants */
|
|
f32 Math_atanf_taylor(f32 x) {
|
|
f32 t;
|
|
f32 q;
|
|
|
|
if (x > 0.f) {
|
|
t = x;
|
|
} else if (x < 0.f) {
|
|
t = -x;
|
|
} else if (x == 0.f) {
|
|
return 0.f;
|
|
} else {
|
|
return qNaN0x10000;
|
|
}
|
|
|
|
if (t <= M_SQRT2 - 1.f) {
|
|
return Math_atanf_taylor_q(x);
|
|
}
|
|
|
|
if (t >= M_SQRT2 + 1.f) {
|
|
q = M_PI / 2 - Math_atanf_taylor_q(1.f / t);
|
|
} else {
|
|
q = M_PI / 4 - Math_atanf_taylor_q((1.f - t) / (1.f + t));
|
|
}
|
|
|
|
if (x > 0.f) {
|
|
return q;
|
|
} else {
|
|
return -q;
|
|
}
|
|
}
|
|
|
|
/* Arctangent approximation using a continued fraction */
|
|
f32 Math_atanf_cfrac(f32 x) {
|
|
s32 sector;
|
|
f32 z;
|
|
f32 conv;
|
|
f32 sq;
|
|
s32 i;
|
|
|
|
if (x >= -1.f && x <= 1.f) {
|
|
sector = 0;
|
|
} else if (x > 1.f) {
|
|
sector = 1;
|
|
x = 1.f / x;
|
|
} else if (x < -1.f) {
|
|
sector = -1;
|
|
x = 1.f / x;
|
|
} else {
|
|
return qNaN0x10000;
|
|
}
|
|
|
|
sq = SQ(x);
|
|
conv = 0.f;
|
|
z = 8.f;
|
|
for (i = 8; i != 0; i--) {
|
|
conv = SQ(z) * sq / (2.f * z + 1.f + conv);
|
|
z -= 1.f;
|
|
}
|
|
conv = x / (1.f + conv);
|
|
|
|
if (sector == 0) {
|
|
return conv;
|
|
} else if (sector > 0) {
|
|
return M_PI / 2 - conv;
|
|
} else {
|
|
return -M_PI / 2 - conv;
|
|
}
|
|
}
|
|
|
|
f32 Math_atanf(f32 x) {
|
|
if (use_cfrac == 0) {
|
|
return Math_atanf_taylor(x);
|
|
} else {
|
|
return Math_atanf_cfrac(x);
|
|
}
|
|
}
|
|
|
|
f32 Math_atan2f(f32 y, f32 x) {
|
|
if (x == 0.f) {
|
|
if (y == 0.f) {
|
|
return 0.f;
|
|
} else if (y > 0.f) {
|
|
return M_PI / 2;
|
|
} else if (y < 0.f) {
|
|
return -M_PI / 2;
|
|
} else {
|
|
return qNaN0x10000;
|
|
}
|
|
} else if (x >= 0.f) {
|
|
return Math_atanf(y / x);
|
|
} else if (y < 0.f) {
|
|
return Math_atanf(y / x) - M_PI;
|
|
} else {
|
|
return M_PI - Math_atanf(-(y / x));
|
|
}
|
|
}
|
|
|
|
f32 Math_asinf(f32 x) {
|
|
return Math_atan2f(x, sqrtf(1.f - SQ(x)));
|
|
}
|
|
|
|
f32 Math_acosf(f32 x) {
|
|
return M_PI / 2 - Math_asinf(x);
|
|
}
|