1
0
Fork 0
mirror of https://github.com/zeldaret/oot.git synced 2024-11-14 13:30:47 +00:00
oot/include/z64math.h
engineer124 a2d62eedb2
Cleanup VecSph: Better Distinguish Between "Spherical" vs. "Geographic" Coordinates (#1407)
* begin geo and sph docs

* cleanup

* cleanup

* cleanup struct

* PR suggestions

* spacing
2022-10-15 15:43:59 +02:00

119 lines
3.2 KiB
C

#ifndef Z64MATH_H
#define Z64MATH_H
#include "ultra64.h"
#define VEC_SET(V,X,Y,Z) (V).x=(X);(V).y=(Y);(V).z=(Z)
typedef struct {
f32 x, y;
} Vec2f; // size = 0x08
typedef struct {
f32 x, y, z;
} Vec3f; // size = 0x0C
typedef struct {
u16 x, y, z;
} Vec3us; // size = 0x06
typedef struct {
s16 x, y, z;
} Vec3s; // size = 0x06
typedef struct {
s32 x, y, z;
} Vec3i; // size = 0x0C
typedef struct {
Vec3s center;
s16 radius;
} Sphere16; // size = 0x08
typedef struct {
Vec3f center;
f32 radius;
} Spheref; // size = 0x10
typedef struct {
Vec3f normal;
f32 originDist;
} Plane; // size = 0x10
typedef struct {
Vec3f vtx[3];
Plane plane;
} TriNorm; // size = 0x34
typedef struct {
/* 0x0000 */ s16 radius;
/* 0x0002 */ s16 height;
/* 0x0004 */ s16 yShift;
/* 0x0006 */ Vec3s pos;
} Cylinder16; // size = 0x0C
typedef struct {
/* 0x00 */ f32 radius;
/* 0x04 */ f32 height;
/* 0x08 */ f32 yShift;
/* 0x0C */ Vec3f pos;
} Cylinderf; // size = 0x18
typedef struct {
/* 0x0000 */ Vec3f point;
/* 0x000C */ Vec3f dir;
} InfiniteLine; // size = 0x18
typedef struct {
/* 0x0000 */ Vec3f a;
/* 0x000C */ Vec3f b;
} Linef; // size = 0x18
typedef struct {
/* 0x0 */ f32 r; // radius
/* 0x4 */ s16 pitch; // depends on coordinate system. See below.
/* 0x6 */ s16 yaw; // azimuthal angle
} VecSphGeo; // size = 0x8
// Defines a point in the spherical coordinate system.
// Pitch is 0 along the positive y-axis (up)
typedef VecSphGeo VecSph;
// Defines a point in the geographic coordinate system.
// Pitch is 0 along the xz-plane (horizon)
typedef VecSphGeo VecGeo;
#define LERP(x, y, scale) (((y) - (x)) * (scale) + (x))
#define LERP32(x, y, scale) ((s32)(((y) - (x)) * (scale)) + (x))
#define LERP16(x, y, scale) ((s16)(((y) - (x)) * (scale)) + (x))
#define F32_LERP(v0,v1,t) ((v0) * (1.0f - (t)) + (v1) * (t))
#define F32_LERPIMP(v0, v1, t) (v0 + ((v1 - v0) * t))
#define F32_LERPIMPINV(v0, v1, t) ((v0) + (((v1) - (v0)) / (t)))
#define BINANG_LERPIMP(v0, v1, t) ((v0) + (s16)((s16)((v1) - (v0)) * (t)))
#define BINANG_LERPIMPINV(v0, v1, t) ((v0) + (s16)((v1) - (v0)) / (t))
#define VEC3F_LERPIMPDST(dst, v0, v1, t){ \
(dst)->x = (v0)->x + (((v1)->x - (v0)->x) * t); \
(dst)->y = (v0)->y + (((v1)->y - (v0)->y) * t); \
(dst)->z = (v0)->z + (((v1)->z - (v0)->z) * t); \
}
#define IS_ZERO(f) (fabsf(f) < 0.008f)
// Angle conversion macros
#define DEG_TO_BINANG(degrees) (s16)((degrees) * (0x8000 / 180.0f))
#define RAD_TO_BINANG(radians) (s16)((radians) * (0x8000 / M_PI))
#define RAD_TO_DEG(radians) ((radians) * (180.0f / M_PI))
#define DEG_TO_RAD(degrees) ((degrees) * (M_PI / 180.0f))
#define BINANG_TO_DEG(binang) ((f32)(binang) * (180.0f / 0x8000))
#define BINANG_TO_RAD(binang) ((f32)(binang) * (M_PI / 0x8000))
#define BINANG_TO_RAD_ALT(binang) (((f32)(binang) / (f32)0x8000) * M_PI)
#define BINANG_TO_RAD_ALT2(binang) (((f32)(binang) * M_PI) / 0x8000)
// Vector macros
#define SQXZ(vec) ((vec.x) * (vec.x) + (vec.z) * (vec.z))
#define DOTXZ(vec1, vec2) ((vec1.x) * (vec2.x) + (vec1.z) * (vec2.z))
#define SQXYZ(vec) ((vec.x) * (vec.x) + (vec.y) * (vec.y) + (vec.z) * (vec.z))
#define DOTXYZ(vec1, vec2) ((vec1.x) * (vec2.x) + (vec1.y) * (vec2.y) + (vec1.z) * (vec2.z))
#endif