mirror of
https://github.com/zeldaret/oot.git
synced 2025-05-10 02:54:24 +00:00
* Introduce afile_sizes, generate headers of sizes for soundfonts and sequences * Initial tools/audio README * Versioning for samplebank extraction * Clean up the disassemble_sequence.py runnable interface * Add static assertions for maximum bank sizes * Boost optimization for audio tools * Samplebank XML doc * Soundfont XML doc * More docs in sampleconv for vadpcm * Various tools fixes/cleanup * VADPCM doc * Try to fix md formatting * VADPCM doc can come later * Fix merge with PR 9 * Fix blobs from MM * Try to fix bss * Try fix bss round 2 * Fix sampleconv memset bug * Suggested documentation tweaks
711 lines
23 KiB
C
711 lines
23 KiB
C
/**
|
|
* SPDX-FileCopyrightText: Copyright (C) 2024 ZeldaRET
|
|
* SPDX-License-Identifier: CC0-1.0
|
|
*/
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "../util.h"
|
|
#include "vadpcm.h"
|
|
|
|
// Levinson-Durbin algorithm for iteratively solving for prediction and reflection coefficients, given autocorrelation
|
|
// https://en.wikipedia.org/wiki/Levinson_recursion
|
|
static int
|
|
durbin(double *acvec, int order, double *reflection_coeffs, double *prediction_coeffs, double *error)
|
|
{
|
|
int i, j;
|
|
double sum, E;
|
|
int ret;
|
|
|
|
prediction_coeffs[0] = 1.0;
|
|
E = acvec[0]; // E[0] = r{xx}[0]
|
|
ret = 0;
|
|
|
|
for (i = 1; i <= order; i++) {
|
|
// SUM(j, a[i-1][j] * r{xx}[i - j] )
|
|
sum = 0.0;
|
|
for (j = 1; j <= i - 1; j++) {
|
|
sum += prediction_coeffs[j] * acvec[i - j];
|
|
}
|
|
|
|
// a[i][i] = -Delta[i-1] / E[i-1]
|
|
prediction_coeffs[i] = (E > 0.0) ? (-(acvec[i] + sum) / E) : 0.0;
|
|
// k[i] = a[i][i]
|
|
reflection_coeffs[i] = prediction_coeffs[i];
|
|
|
|
if (fabs(reflection_coeffs[i]) > 1.0) {
|
|
// incr when a reflection coefficient has a magnitude > 1 (indicates numerical instability in the model)
|
|
ret++;
|
|
}
|
|
|
|
for (j = 1; j < i; j++) {
|
|
// a[i][j] = a[i-1][j] + a[i-1][i - j] * a[i][i]
|
|
prediction_coeffs[j] += prediction_coeffs[i - j] * prediction_coeffs[i];
|
|
}
|
|
|
|
// E[i] = E[i-1] * (1.0 - k[i] ** 2)
|
|
// = E[i-1] * (1.0 - a[i][i] ** 2)
|
|
E *= 1.0 - prediction_coeffs[i] * prediction_coeffs[i];
|
|
}
|
|
*error = E;
|
|
return ret;
|
|
}
|
|
|
|
// Reflection coefficients (k) -> Predictor coefficients (a)
|
|
// A subset of Levinson-Durbin that only computes predictors from known reflection coefficients and previous predictors
|
|
static void
|
|
afromk(double *k, double *ai, int order)
|
|
{
|
|
int i, j;
|
|
|
|
ai[0] = 1.0;
|
|
|
|
for (i = 1; i <= order; i++) {
|
|
// a[i][i] = k[i]
|
|
ai[i] = k[i];
|
|
|
|
for (j = 1; j <= i - 1; j++) {
|
|
// a[i][j] = a[i-1][j] + a[i-1][i - j] * k[i] = a[i-1][j] + a[i-1][i - j] * a[i][i]
|
|
ai[j] += ai[i - j] * ai[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prediction coefficients (a) -> Reflection coefficients (k)
|
|
// Performs afromk in reverse?
|
|
// Returns 0 if numerically stable, otherwise returns non-zero
|
|
static int
|
|
kfroma(double *in, double *out, int order)
|
|
{
|
|
int i, j;
|
|
double div;
|
|
double temp;
|
|
double next[order + 1];
|
|
int ret = 0;
|
|
|
|
out[order] = in[order];
|
|
|
|
for (i = order - 1; i >= 1; i--) {
|
|
for (j = 0; j <= i; j++) {
|
|
temp = out[i + 1];
|
|
div = 1.0 - temp * temp;
|
|
|
|
if (div == 0.0) {
|
|
return 1;
|
|
}
|
|
|
|
next[j] = (in[j] - in[i - j + 1] * temp) / div;
|
|
}
|
|
|
|
for (j = 0; j <= i; j++) {
|
|
in[j] = next[j];
|
|
}
|
|
|
|
out[i] = next[i];
|
|
if (fabs(out[i]) > 1.0) {
|
|
// Not numerically stable
|
|
ret++;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// autocorrelation (r{xx}) from predictors (a) ?
|
|
static void
|
|
rfroma(double *in, int n, double *out)
|
|
{
|
|
int i, j;
|
|
double mat[n + 1][n + 1];
|
|
double div;
|
|
|
|
mat[n][0] = 1.0;
|
|
for (i = 1; i <= n; i++) {
|
|
mat[n][i] = -in[i];
|
|
}
|
|
|
|
for (i = n; i >= 1; i--) {
|
|
div = 1.0 - mat[i][i] * mat[i][i];
|
|
|
|
for (j = 1; j <= i - 1; j++) {
|
|
mat[i - 1][j] = (mat[i][i - j] * mat[i][i] + mat[i][j]) / div;
|
|
}
|
|
}
|
|
|
|
out[0] = 1.0;
|
|
for (i = 1; i <= n; i++) {
|
|
out[i] = 0.0;
|
|
for (j = 1; j <= i; j++) {
|
|
out[i] += mat[i][j] * out[i - j];
|
|
}
|
|
}
|
|
}
|
|
|
|
static double
|
|
model_dist(double *mean_predictors, double *frame_predictors, int order)
|
|
{
|
|
double autocorrelation_frame_predictors[order + 1];
|
|
double autocorrelation_mean_predictors[order + 1];
|
|
double ret;
|
|
int i, j;
|
|
|
|
// autocorrelation from frame predictors
|
|
rfroma(frame_predictors, order, autocorrelation_frame_predictors);
|
|
|
|
// autocorrelation from current mean predictors (?)
|
|
for (i = 0; i <= order; i++) {
|
|
autocorrelation_mean_predictors[i] = 0.0;
|
|
for (j = 0; j <= order - i; j++)
|
|
autocorrelation_mean_predictors[i] += mean_predictors[j] * mean_predictors[i + j];
|
|
}
|
|
|
|
// compute "model distance" (scaled L2 norm: 2 * inner(ac1, ac2) )
|
|
// this compares how good the mean predictors are to the optimal predictors for this frame
|
|
ret = autocorrelation_frame_predictors[0] * autocorrelation_mean_predictors[0];
|
|
for (i = 1; i <= order; i++)
|
|
ret += 2 * autocorrelation_frame_predictors[i] * autocorrelation_mean_predictors[i];
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Calculate the autocorrelation matrix of two vectors at x and x - xlen
|
|
// https://en.wikipedia.org/wiki/Autocorrelation
|
|
static void
|
|
acmat(int16_t *x, int order, int xlen, double **ac)
|
|
{
|
|
int i, j, k;
|
|
|
|
for (i = 1; i <= order; i++) {
|
|
for (j = 1; j <= order; j++) {
|
|
// R{xx}[i,j] = E[X[i] * X[j]]
|
|
|
|
ac[i][j] = 0.0;
|
|
for (k = 0; k < xlen; k++) {
|
|
ac[i][j] += x[k - i] * x[k - j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Computes the autocorrelation vector of two vectors at x and x - xlen
|
|
static void
|
|
acvect(int16_t *x, int order, int xlen, double *ac)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i <= order; i++) {
|
|
ac[i] = 0.0;
|
|
// r{xx} = E(x(m)x) = SUM(j, x[j - i] * x[j])
|
|
for (j = 0; j < xlen; j++) {
|
|
ac[i] -= x[j - i] * x[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Lower-Upper (with Permutation vector) (LUP) Decomposition
|
|
*
|
|
* Replaces a real n-by-n matrix "a" with the LU decomposition of a row-wise
|
|
* permutation of itself.
|
|
*
|
|
* Input parameters:
|
|
* a: The matrix which is operated on. 1-indexed; it should be of size
|
|
* (n+1) x (n+1), and row/column index 0 is not used.
|
|
* n: The size of the matrix.
|
|
*
|
|
* Output parameters:
|
|
* indx: The row permutation performed. 1-indexed; it should be of size n+1,
|
|
* and index 0 is not used.
|
|
* d: the determinant of the permutation matrix.
|
|
*
|
|
* Returns 1 to indicate failure if the matrix is singular or has zeroes on the
|
|
* diagonal, 0 on success.
|
|
*
|
|
* Derived from ludcmp in "Numerical Recipes in C: The Art of Scientific Computing",
|
|
* with modified error handling.
|
|
*/
|
|
static int
|
|
lud(double **a, int n, int *perm, int *d)
|
|
{
|
|
int i, imax = 0, j, k;
|
|
double big, dum, sum, temp;
|
|
double min, max;
|
|
double vv[n + 1];
|
|
|
|
*d = 1;
|
|
for (i = 1; i <= n; i++) {
|
|
big = 0.0;
|
|
for (j = 1; j <= n; j++)
|
|
if ((temp = fabs(a[i][j])) > big)
|
|
big = temp;
|
|
|
|
if (big == 0.0)
|
|
return 1;
|
|
|
|
vv[i] = 1.0 / big;
|
|
}
|
|
|
|
for (j = 1; j <= n; j++) {
|
|
for (i = 1; i < j; i++) {
|
|
sum = a[i][j];
|
|
for (k = 1; k < i; k++)
|
|
sum -= a[i][k] * a[k][j];
|
|
|
|
a[i][j] = sum;
|
|
}
|
|
|
|
big = 0.0;
|
|
|
|
for (i = j; i <= n; i++) {
|
|
sum = a[i][j];
|
|
for (k = 1; k < j; k++)
|
|
sum -= a[i][k] * a[k][j];
|
|
|
|
a[i][j] = sum;
|
|
|
|
if ((dum = vv[i] * fabs(sum)) >= big) {
|
|
big = dum;
|
|
imax = i;
|
|
}
|
|
}
|
|
|
|
if (j != imax) {
|
|
for (k = 1; k <= n; k++) {
|
|
dum = a[imax][k];
|
|
a[imax][k] = a[j][k];
|
|
a[j][k] = dum;
|
|
}
|
|
|
|
*d = -(*d);
|
|
vv[imax] = vv[j];
|
|
}
|
|
|
|
perm[j] = imax;
|
|
|
|
if (a[j][j] == 0.0)
|
|
return 1;
|
|
|
|
if (j != n) {
|
|
dum = 1.0 / (a[j][j]);
|
|
for (i = j + 1; i <= n; i++)
|
|
a[i][j] *= dum;
|
|
}
|
|
}
|
|
|
|
min = 1e10;
|
|
max = 0.0;
|
|
for (i = 1; i <= n; i++) {
|
|
temp = fabs(a[i][i]);
|
|
if (temp < min)
|
|
min = temp;
|
|
if (temp > max)
|
|
max = temp;
|
|
}
|
|
return (min / max < 1e-10) ? 1 : 0;
|
|
}
|
|
|
|
/**
|
|
* Solves the set of n linear equations Ax = b, using LU decomposition back-substitution.
|
|
*
|
|
* Input parameters:
|
|
* a: The LU decomposition of a matrix, created by "lud".
|
|
* n: The size of the matrix.
|
|
* indx: Row permutation vector, created by "lud".
|
|
* b: The vector b in the equation. 1-indexed; is should be of size n+1, and index 0 is not used.
|
|
*
|
|
* Output parameters:
|
|
* b: The output vector x. 1-indexed.
|
|
*
|
|
* From "Numerical Recipes in C: The Art of Scientific Computing".
|
|
*/
|
|
static void
|
|
lubksb(double **a, int n, int *perm, double *b)
|
|
{
|
|
int i, ii = 0, ip, j;
|
|
double sum;
|
|
|
|
for (i = 1; i <= n; i++) {
|
|
ip = perm[i];
|
|
sum = b[ip];
|
|
b[ip] = b[i];
|
|
|
|
if (ii) {
|
|
for (j = ii; j <= i - 1; j++)
|
|
sum -= a[i][j] * b[j];
|
|
} else if (sum) {
|
|
ii = i;
|
|
}
|
|
|
|
b[i] = sum;
|
|
}
|
|
|
|
for (i = n; i >= 1; i--) {
|
|
sum = b[i];
|
|
for (j = i + 1; j <= n; j++)
|
|
sum -= a[i][j] * b[j];
|
|
b[i] = sum / a[i][i];
|
|
}
|
|
}
|
|
|
|
static void
|
|
split(double **predictors, double *delta, int order, int npredictors, double scale)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < npredictors; i++) {
|
|
for (j = 0; j <= order; j++) {
|
|
predictors[i + npredictors][j] = predictors[i][j] + delta[j] * scale;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
refine(double **predictors, int order, int npredictors, double *all_frame_predictors, int num_frame_predictors,
|
|
int refine_iters)
|
|
{
|
|
int iter;
|
|
double dist;
|
|
double dummy;
|
|
double best_value;
|
|
int best_index;
|
|
int i, j;
|
|
|
|
double rsums[npredictors][order + 1];
|
|
int counts[npredictors];
|
|
double vec[order + 1];
|
|
|
|
// For some number of refinement iterations
|
|
for (iter = 0; iter < refine_iters; iter++) {
|
|
// Initialize average autocorrelations
|
|
memset(counts, 0, npredictors * sizeof(int));
|
|
memset(rsums, 0, npredictors * (order + 1) * sizeof(double));
|
|
|
|
// Sum autocorrelations for averaging for each frame, binning them based on best fitting predictor set
|
|
for (i = 0; i < num_frame_predictors; i++) {
|
|
best_value = 1e30;
|
|
best_index = 0;
|
|
|
|
// Find the choice of predictor that minimizes the "model distance" for this frame
|
|
for (j = 0; j < npredictors; j++) {
|
|
// Compare with current mean predictors, the distance metric is based on autocorrelations
|
|
dist = model_dist(predictors[j], &all_frame_predictors[(order + 1) * i], order);
|
|
|
|
if (dist < best_value) {
|
|
// Record the new best predictors
|
|
best_value = dist;
|
|
best_index = j;
|
|
}
|
|
}
|
|
|
|
// Compute autocorrelation from optimal predictor
|
|
rfroma(&all_frame_predictors[(order + 1) * i], order, vec);
|
|
// Add to average autocorrelation for the best predictor choice
|
|
for (j = 0; j <= order; j++)
|
|
rsums[best_index][j] += vec[j];
|
|
|
|
// Update the counter of how many frames we've summed for this predictor
|
|
counts[best_index]++;
|
|
}
|
|
|
|
// Finalize average autocorrelations
|
|
for (i = 0; i < npredictors; i++) {
|
|
if (counts[i] > 1) {
|
|
// Need to divide by the number of frames we summed
|
|
for (j = 0; j <= order; j++) {
|
|
rsums[i][j] /= counts[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update the predictors with the new average autocorrelations in each bin
|
|
for (i = 0; i < npredictors; i++) {
|
|
// Compute predictors and reflection coefficients from average autocorrelation
|
|
durbin(rsums[i], order, vec, predictors[i], &dummy);
|
|
|
|
// Clamp reflection coeffs for stability
|
|
for (j = 1; j <= order; j++) {
|
|
if (vec[j] >= 1.0)
|
|
vec[j] = 0.9999999999;
|
|
if (vec[j] <= -1.0)
|
|
vec[j] = -0.9999999999;
|
|
}
|
|
|
|
// Convert clamped reflection coeffs to stable predictors
|
|
afromk(vec, predictors[i], order);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
read_row(int16_t *out, double *predictors, int order)
|
|
{
|
|
int i, j, k;
|
|
int overflows;
|
|
double table[8][order];
|
|
|
|
// (discussion is for order=2)
|
|
//
|
|
// Converts 2 predictors a,b into the coefficients for an FIR filter matrix
|
|
// [ c0, d0, 1, 0, 0, 0, 0, 0, 0, 0 ]
|
|
// [ c0, d1, d0, 1, 0, 0, 0, 0, 0, 0 ]
|
|
// [ c0, d2, d1, d0, 1, 0, 0, 0, 0, 0 ]
|
|
// [ c0, d3, d2, d1, d0, 1, 0, 0, 0, 0 ]
|
|
// [ c0, d4, d3, d2, d1, d0, 1, 0, 0, 0 ]
|
|
// [ c0, d5, d4, d3, d2, d1, d0, 1, 0, 0 ]
|
|
// [ c0, d6, d5, d4, d3, d2, d1, d0, 1, 0 ]
|
|
// [ c0, d7, d6, d5, d4, d3, d2, d1, d0, 1 ]
|
|
//
|
|
// Multiplication by this matrix on a vector containing the previous two samples p[-2] and p[-1] and 8 residuals
|
|
// s[i] decodes 8 samples p[i] simultaneously.
|
|
// Only c0..7 and d0..7 are actually stored in the book, the decoder arranges the rest.
|
|
//
|
|
// The coefficients are those you get by substituting decoded samples into the prediction model at each step to
|
|
// express each p[i] for i in [0, 8) as a linear combination of p[-2], p[-1] and past residuals
|
|
// p[i] = a * p[i - 2] * b * p[i - 1] + s[i]
|
|
//
|
|
// c0 = a, d0 = b
|
|
// c1 = ab, d1 = a + b^2
|
|
// c2 = a^2 + ab^2, d2 = 2ab + b^3
|
|
// ...
|
|
|
|
for (i = 0; i < order; i++) {
|
|
for (j = 0; j < i; j++)
|
|
table[i][j] = 0.0;
|
|
|
|
for (j = i; j < order; j++)
|
|
table[i][j] = -predictors[order - j + i];
|
|
}
|
|
for (i = order; i < 8; i++) {
|
|
for (j = 0; j < order; j++)
|
|
table[i][j] = 0.0;
|
|
}
|
|
|
|
for (i = 1; i < 8; i++) {
|
|
for (j = 1; j <= order; j++) {
|
|
if (i >= j) {
|
|
for (k = 0; k < order; k++)
|
|
table[i][k] -= predictors[j] * table[i - j][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert double-precision book entries into qs4.11 fixed point numbers,
|
|
// rounding away from 0 and checking for overflows
|
|
overflows = 0;
|
|
for (i = 0; i < order; i++) {
|
|
for (j = 0; j < 8; j++) {
|
|
int ival;
|
|
double fval = table[j][i] * (double)(1 << 11);
|
|
|
|
if (fval < 0.0) {
|
|
ival = (int)(fval - 0.5);
|
|
if (ival < -0x8000)
|
|
overflows++;
|
|
} else {
|
|
ival = (int)(fval + 0.5);
|
|
if (ival >= 0x8000)
|
|
overflows++;
|
|
}
|
|
|
|
*out++ = ival;
|
|
}
|
|
}
|
|
|
|
return overflows;
|
|
}
|
|
|
|
int
|
|
tabledesign_run(int16_t *order_out, int16_t *npredictors_out, int16_t **book_data_out, void *sample_data,
|
|
size_t num_samples, const table_design_spec *design)
|
|
{
|
|
static const table_design_spec default_design = {
|
|
.order = 2,
|
|
.bits = 2,
|
|
.refine_iters = 2,
|
|
.thresh = 10.0,
|
|
.frame_size = 16,
|
|
};
|
|
|
|
if (design == NULL)
|
|
design = &default_design;
|
|
|
|
int16_t order = design->order;
|
|
int16_t npredictors = 1 << design->bits;
|
|
unsigned int frame_size = design->frame_size;
|
|
|
|
int num_order = order + 1;
|
|
|
|
double vec[num_order];
|
|
int perm[num_order];
|
|
double reflection_coeffs[num_order];
|
|
|
|
int16_t *buffer = MALLOC_CHECKED_INFO(2 * frame_size * sizeof(int16_t), "frame_size=%u", frame_size);
|
|
|
|
double **predictors = MALLOC_CHECKED_INFO(npredictors * sizeof(double *), "npredictors=%d", npredictors);
|
|
for (int i = 0; i < npredictors; i++)
|
|
predictors[i] = MALLOC_CHECKED_INFO(num_order * sizeof(double), "npredictors=%d", npredictors);
|
|
|
|
double **autocorrelation_matrix = MALLOC_CHECKED_INFO(num_order * sizeof(double *), "num_order=%d", num_order);
|
|
for (int i = 0; i < num_order; i++)
|
|
autocorrelation_matrix[i] = MALLOC_CHECKED_INFO(num_order * sizeof(double), "num_order=%d", num_order);
|
|
|
|
// (back-)align to a multiple of the frame size
|
|
size_t nframes = num_samples - (num_samples % frame_size);
|
|
|
|
double *all_frame_predictors =
|
|
MALLOC_CHECKED_INFO(nframes * num_order * sizeof(double), "nframes=%lu, num_order=%d", nframes, num_order);
|
|
uint32_t num_frame_predictors = 0;
|
|
|
|
int16_t *sample = sample_data;
|
|
int16_t *sample_end = sample + nframes;
|
|
|
|
memset(buffer, 0, frame_size * sizeof(*buffer));
|
|
|
|
// First, compute the optimal set of predictors for every complete frame in the signal, where optimal here means
|
|
// the predictors that minimize the mean-square error between the predicted signal and the true signal.
|
|
|
|
for (; sample < sample_end; sample += frame_size) {
|
|
// Copy sample data into second half of buffer, during the first iteration the first half is 0 while in
|
|
// later iterations the second half of the previous iteration is shifted into the first half.
|
|
memcpy(&buffer[frame_size], sample, frame_size * sizeof(*buffer));
|
|
|
|
// Compute autocorrelation vector of the two vectors in the buffer
|
|
acvect(&buffer[frame_size], order, frame_size, vec);
|
|
|
|
// First element of autocorrelation has the largest magnitude
|
|
if (fabs(vec[0]) > design->thresh) {
|
|
// Over threshold
|
|
|
|
// Computes the autocorrelation matrix of the two vectors in the buffer
|
|
acmat(&buffer[frame_size], order, frame_size, autocorrelation_matrix);
|
|
|
|
// Compute the LUP decomposition of the autocorrelation matrix
|
|
int perm_det;
|
|
if (lud(autocorrelation_matrix, order, perm, &perm_det) == 0) { // Continue only if numerically stable
|
|
// Back-substitution to solve the linear equation Ra = r
|
|
// where
|
|
// R = autocorrelation matrix
|
|
// r = autocorrelation vector
|
|
// a = linear prediction coefficients
|
|
// After this vec contains the prediction coefficients that minimize the mean-square error.
|
|
lubksb(autocorrelation_matrix, order, perm, vec);
|
|
vec[0] = 1.0;
|
|
|
|
// Compute reflection coefficients from prediction coefficients
|
|
if (kfroma(vec, reflection_coeffs, order) == 0) { // Continue only if numerically stable
|
|
all_frame_predictors[num_frame_predictors * num_order] = 1.0;
|
|
|
|
// Clamp the reflection coefficients. Reflection coefficients are clamped rather than the
|
|
// predictors themselves as the reflection coefficients have a direct relationship with the
|
|
// stability of the model. If the reflection coefficients are outside of the interval (-1,1)
|
|
// the model is unstable as the associated transfer function will contain poles outside the
|
|
// complex unit disk. If the reflection coefficients are all inside the interval (-1,1) there
|
|
// are no poles outside of the unit disk, guaranteeing the stability of the model.
|
|
for (int i = 1; i < num_order; i++) {
|
|
if (reflection_coeffs[i] >= 1.0)
|
|
reflection_coeffs[i] = 0.9999999999;
|
|
if (reflection_coeffs[i] <= -1.0)
|
|
reflection_coeffs[i] = -0.9999999999;
|
|
}
|
|
|
|
// Compute prediction coefficients from clamped reflection coefficients
|
|
afromk(reflection_coeffs, &all_frame_predictors[num_frame_predictors * num_order], order);
|
|
num_frame_predictors++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Move second vector to first vector
|
|
memcpy(&buffer[0], &buffer[frame_size], frame_size * sizeof(*buffer));
|
|
}
|
|
|
|
// Now that predictors for every frame have been found, they need to be reduced to a manageable quantity
|
|
// (determined by npredictors) to build the prediction codebook that will be exported. First compute the average
|
|
// autocorrelation of the prediction models for all frames:
|
|
|
|
// Create a vector [1.0, 0.0, ..., 0.0]
|
|
vec[0] = 1.0;
|
|
for (int i = 1; i < num_order; i++)
|
|
vec[i] = 0.0;
|
|
|
|
for (uint32_t i = 0; i < num_frame_predictors; i++) {
|
|
// Compute autocorrelation from predictors, equivalent to computing the autocorrelation on the signal produced
|
|
// by following the prediction model exactly.
|
|
rfroma(&all_frame_predictors[i * num_order], order, predictors[0]);
|
|
|
|
for (int k = 1; k < num_order; k++)
|
|
vec[k] += predictors[0][k];
|
|
}
|
|
|
|
for (int i = 1; i < num_order; i++)
|
|
vec[i] /= num_frame_predictors;
|
|
|
|
// vec now contains the average autocorrelation.
|
|
// Compute predictors for this average autocorrelation using the Levinson-Durbin algorithm.
|
|
double dummy;
|
|
durbin(vec, order, reflection_coeffs, predictors[0], &dummy);
|
|
|
|
// Clamp resulting reflection coefficients to ensure stability
|
|
for (int i = 1; i < num_order; i++) {
|
|
if (reflection_coeffs[i] >= 1.0)
|
|
reflection_coeffs[i] = 0.9999999999;
|
|
if (reflection_coeffs[i] <= -1.0)
|
|
reflection_coeffs[i] = -0.9999999999;
|
|
}
|
|
|
|
// Convert clamped reflection coefficients to stable predictors
|
|
afromk(reflection_coeffs, predictors[0], order);
|
|
|
|
// Starting with the predictors obtained from the average autocorrelation, cluster the predictors for each frame
|
|
// via k-means until we have just npredictors worth of output
|
|
for (unsigned cur_bits = 0; cur_bits < design->bits; cur_bits++) {
|
|
double split_delta[num_order];
|
|
|
|
// Prepare [0, ..., -1, 0]
|
|
for (int i = 0; i < num_order; i++)
|
|
split_delta[i] = 0.0;
|
|
split_delta[order - 1] = -1.0;
|
|
|
|
// Split the predictors into two halves
|
|
split(predictors, split_delta, order, 1 << cur_bits, 0.01);
|
|
|
|
// Update the values of each half to the means of the halves
|
|
refine(predictors, order, 1 << (1 + cur_bits), all_frame_predictors, num_frame_predictors,
|
|
design->refine_iters);
|
|
}
|
|
|
|
// Now we have the reduced set of predictors, write them into the book of size 8 * order * npredictors
|
|
|
|
int16_t *book_data =
|
|
MALLOC_CHECKED_INFO(8 * order * npredictors * sizeof(int16_t), "order=%d, npredictors=%d", order, npredictors);
|
|
|
|
*order_out = order;
|
|
*npredictors_out = npredictors;
|
|
|
|
// As a final step, we need to convert the predictors into coefficients for an FIR filter so that samples in a
|
|
// frame can be decoded in parallel taking advantage of the RSP's 8-lane SIMD instruction set.
|
|
int num_oflow = 0;
|
|
for (int i = 0; i < npredictors; i++)
|
|
num_oflow += read_row(&book_data[8 * order * i], predictors[i], order);
|
|
|
|
if (num_oflow) {
|
|
error("overflow detected in tabledesign");
|
|
}
|
|
|
|
*book_data_out = book_data;
|
|
|
|
free(buffer);
|
|
free(all_frame_predictors);
|
|
|
|
for (int i = 0; i < num_order; i++)
|
|
free(autocorrelation_matrix[i]);
|
|
free(autocorrelation_matrix);
|
|
|
|
for (int i = 0; i < npredictors; i++)
|
|
free(predictors[i]);
|
|
free(predictors);
|
|
|
|
return 0;
|
|
}
|