mirror of
https://github.com/GTAmodding/re3.git
synced 2025-07-15 10:24:07 +00:00
added wrappers around math functions
This commit is contained in:
parent
80e0409d6a
commit
4a36d64f15
31 changed files with 204 additions and 191 deletions
|
@ -457,7 +457,7 @@ CCollision::TestLineSphere(const CColLine &line, const CColSphere &sph)
|
|||
// I leave in the strange -2 factors even though they serve no real purpose
|
||||
float projline = -2.0f * DotProduct(v01, v0c); // project v0c onto line
|
||||
// Square of tangent from p0 multiplied by line length so we can compare with projline.
|
||||
// The length of the tangent would be this: sqrt((c-p0)^2 - r^2).
|
||||
// The length of the tangent would be this: Sqrt((c-p0)^2 - r^2).
|
||||
// Negative if p0 is inside the sphere! This breaks the test!
|
||||
float tansq = 4.0f * linesq *
|
||||
(sph.center.MagnitudeSqr() - 2.0f*DotProduct(sph.center, line.p0) + line.p0.MagnitudeSqr() - sph.radius*sph.radius);
|
||||
|
@ -467,10 +467,10 @@ CCollision::TestLineSphere(const CColLine &line, const CColSphere &sph)
|
|||
return false;
|
||||
// projline (negative in GTA for some reason) is the point on the line
|
||||
// in the middle of the two intersection points (startin from p0).
|
||||
// sqrt(diffsq) somehow works out to be the distance from that
|
||||
// Sqrt(diffsq) somehow works out to be the distance from that
|
||||
// midpoint to the intersection points.
|
||||
// So subtract that and get rid of the awkward scaling:
|
||||
float f = (-projline - sqrt(diffsq)) / (2.0f*linesq);
|
||||
float f = (-projline - Sqrt(diffsq)) / (2.0f*linesq);
|
||||
// f should now be in range [0, 1] for [p0, p1]
|
||||
return f >= 0.0f && f <= 1.0f;
|
||||
}
|
||||
|
@ -480,7 +480,7 @@ CCollision::TestSphereTriangle(const CColSphere &sphere,
|
|||
const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane)
|
||||
{
|
||||
// If sphere and plane don't intersect, no collision
|
||||
if(fabs(plane.CalcPoint(sphere.center)) > sphere.radius)
|
||||
if(Abs(plane.CalcPoint(sphere.center)) > sphere.radius)
|
||||
return false;
|
||||
|
||||
const CVector &va = verts[tri.a];
|
||||
|
@ -669,7 +669,7 @@ CCollision::ProcessSphereBox(const CColSphere &sph, const CColBox &box, CColPoin
|
|||
dist = sph.center - p;
|
||||
float lensq = dist.MagnitudeSqr();
|
||||
if(lensq < mindistsq){
|
||||
float len = sqrt(lensq);
|
||||
float len = Sqrt(lensq);
|
||||
point.point = p;
|
||||
point.normal = dist * (1.0f/len);
|
||||
point.surfaceA = sph.surface;
|
||||
|
@ -816,7 +816,7 @@ CCollision::ProcessLineSphere(const CColLine &line, const CColSphere &sphere, CC
|
|||
if(diffsq < 0.0f)
|
||||
return false;
|
||||
// point of first intersection, in range [0,1] between p0 and p1
|
||||
float t = (projline - sqrt(diffsq)) / linesq;
|
||||
float t = (projline - Sqrt(diffsq)) / linesq;
|
||||
// if not on line or beyond mindist, no intersection
|
||||
if(t < 0.0f || t > 1.0f || t >= mindist)
|
||||
return false;
|
||||
|
@ -1010,7 +1010,7 @@ CCollision::ProcessSphereTriangle(const CColSphere &sphere,
|
|||
// If sphere and plane don't intersect, no collision
|
||||
float planedist = plane.CalcPoint(sphere.center);
|
||||
float distsq = planedist*planedist;
|
||||
if(fabs(planedist) > sphere.radius || distsq > mindistsq)
|
||||
if(Abs(planedist) > sphere.radius || distsq > mindistsq)
|
||||
return false;
|
||||
|
||||
const CVector &va = verts[tri.a];
|
||||
|
@ -1057,7 +1057,7 @@ CCollision::ProcessSphereTriangle(const CColSphere &sphere,
|
|||
else assert(0);
|
||||
}else if(testcase == 3){
|
||||
// center is in triangle
|
||||
dist = fabs(planedist);
|
||||
dist = Abs(planedist);
|
||||
p = sphere.center - normal*planedist;
|
||||
}else
|
||||
assert(0); // front fell off
|
||||
|
@ -1333,7 +1333,7 @@ CCollision::DistToLine(const CVector *l0, const CVector *l1, const CVector *poin
|
|||
if(dot >= lensq)
|
||||
return (*point - *l1).Magnitude();
|
||||
// distance to line
|
||||
return sqrt((*point - *l0).MagnitudeSqr() - dot*dot/lensq);
|
||||
return Sqrt((*point - *l0).MagnitudeSqr() - dot*dot/lensq);
|
||||
}
|
||||
|
||||
// same as above but also return the point on the line
|
||||
|
@ -1641,7 +1641,7 @@ CColTrianglePlane::Set(const CVector *v, CColTriangle &tri)
|
|||
normal = CrossProduct(vc-va, vb-va);
|
||||
normal.Normalise();
|
||||
dist = DotProduct(normal, va);
|
||||
CVector an(fabs(normal.x), fabs(normal.y), fabs(normal.z));
|
||||
CVector an(Abs(normal.x), Abs(normal.y), Abs(normal.z));
|
||||
// find out largest component and its direction
|
||||
if(an.x > an.y && an.x > an.z)
|
||||
dir = normal.x < 0.0f ? DIR_X_NEG : DIR_X_POS;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue