mirror of
https://github.com/GTAmodding/re3.git
synced 2024-11-27 10:33:44 +00:00
140 lines
No EOL
2.9 KiB
C++
140 lines
No EOL
2.9 KiB
C++
#pragma once
|
|
|
|
class CVector
|
|
{
|
|
public:
|
|
float x, y, z;
|
|
CVector(void) {}
|
|
CVector(float x, float y, float z) : x(x), y(y), z(z) {}
|
|
#ifdef RWCORE_H
|
|
CVector(const RwV3d &v) : x(v.x), y(v.y), z(v.z) {}
|
|
|
|
operator RwV3d (void) const {
|
|
RwV3d vecRw = { this->x, this->y, this->z };
|
|
return vecRw;
|
|
}
|
|
|
|
operator RwV3d *(void) {
|
|
return (RwV3d*)this;
|
|
}
|
|
#endif
|
|
// (0,1,0) means no rotation. So get right vector and its atan
|
|
float Heading(void) const { return Atan2(-x, y); }
|
|
float Magnitude(void) const { return Sqrt(x*x + y*y + z*z); }
|
|
float MagnitudeSqr(void) const { return x*x + y*y + z*z; }
|
|
float Magnitude2D(void) const { return Sqrt(x*x + y*y); }
|
|
float MagnitudeSqr2D(void) const { return x*x + y*y; }
|
|
void Normalise(void) {
|
|
float sq = MagnitudeSqr();
|
|
if(sq > 0.0f){
|
|
float invsqrt = RecipSqrt(sq);
|
|
x *= invsqrt;
|
|
y *= invsqrt;
|
|
z *= invsqrt;
|
|
}else
|
|
x = 1.0f;
|
|
}
|
|
|
|
void Normalise(float norm) {
|
|
float sq = MagnitudeSqr();
|
|
float invsqrt = RecipSqrt(norm, sq);
|
|
x *= invsqrt;
|
|
y *= invsqrt;
|
|
z *= invsqrt;
|
|
}
|
|
|
|
void Normalise2D(void) {
|
|
float sq = MagnitudeSqr2D();
|
|
float invsqrt = RecipSqrt(sq);
|
|
x *= invsqrt;
|
|
y *= invsqrt;
|
|
}
|
|
|
|
const CVector &operator+=(CVector const &right) {
|
|
x += right.x;
|
|
y += right.y;
|
|
z += right.z;
|
|
return *this;
|
|
}
|
|
|
|
const CVector &operator-=(CVector const &right) {
|
|
x -= right.x;
|
|
y -= right.y;
|
|
z -= right.z;
|
|
return *this;
|
|
}
|
|
|
|
const CVector &operator*=(float right) {
|
|
x *= right;
|
|
y *= right;
|
|
z *= right;
|
|
return *this;
|
|
}
|
|
|
|
const CVector &operator/=(float right) {
|
|
x /= right;
|
|
y /= right;
|
|
z /= right;
|
|
return *this;
|
|
}
|
|
|
|
CVector operator-() const {
|
|
return CVector(-x, -y, -z);
|
|
}
|
|
|
|
const bool operator==(CVector const &right) {
|
|
return x == right.x && y == right.y && z == right.z;
|
|
}
|
|
|
|
const bool operator!=(CVector const &right) {
|
|
return x != right.x || y != right.y || z != right.z;
|
|
}
|
|
|
|
bool IsZero(void) const { return x == 0.0f && y == 0.0f && z == 0.0f; }
|
|
};
|
|
|
|
inline CVector operator+(const CVector &left, const CVector &right)
|
|
{
|
|
return CVector(left.x + right.x, left.y + right.y, left.z + right.z);
|
|
}
|
|
|
|
inline CVector operator-(const CVector &left, const CVector &right)
|
|
{
|
|
return CVector(left.x - right.x, left.y - right.y, left.z - right.z);
|
|
}
|
|
|
|
inline CVector operator*(const CVector &left, float right)
|
|
{
|
|
return CVector(left.x * right, left.y * right, left.z * right);
|
|
}
|
|
|
|
inline CVector operator*(float left, const CVector &right)
|
|
{
|
|
return CVector(left * right.x, left * right.y, left * right.z);
|
|
}
|
|
|
|
inline CVector operator/(const CVector &left, float right)
|
|
{
|
|
return CVector(left.x / right, left.y / right, left.z / right);
|
|
}
|
|
|
|
inline float
|
|
DotProduct(const CVector &v1, const CVector &v2)
|
|
{
|
|
return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
|
|
}
|
|
|
|
inline const CVector
|
|
CrossProduct(const CVector &v1, const CVector &v2)
|
|
{
|
|
return CVector(
|
|
v1.y*v2.z - v1.z*v2.y,
|
|
v1.z*v2.x - v1.x*v2.z,
|
|
v1.x*v2.y - v1.y*v2.x);
|
|
}
|
|
|
|
inline float
|
|
Distance(const CVector &v1, const CVector &v2)
|
|
{
|
|
return (v2 - v1).Magnitude();
|
|
} |