re3/src/extras/custompipes_gl.cpp
2021-06-24 21:32:43 +03:00

742 lines
17 KiB
C++

#include "common.h"
#ifdef RW_OPENGL
#include "main.h"
#include "RwHelper.h"
#include "Lights.h"
#include "Timecycle.h"
#include "FileMgr.h"
#include "Clock.h"
#include "Weather.h"
#include "TxdStore.h"
#include "Renderer.h"
#include "World.h"
#include "custompipes.h"
#ifdef EXTENDED_PIPELINES
#ifndef LIBRW
#error "Need librw for EXTENDED_PIPELINES"
#endif
namespace CustomPipes {
static int32 u_viewVec;
static int32 u_rampStart;
static int32 u_rampEnd;
static int32 u_rimData;
static int32 u_lightMap;
static int32 u_eye;
static int32 u_reflProps;
static int32 u_specDir;
static int32 u_specColor;
#define U(i) currentShader->uniformLocations[i]
/*
* Neo Vehicle pipe
*/
rw::gl3::Shader *neoVehicleShader;
static void
uploadSpecLights(void)
{
using namespace rw::gl3;
rw::RGBAf colors[1 + NUMEXTRADIRECTIONALS];
struct {
rw::V3d dir;
float power;
} dirs[1 + NUMEXTRADIRECTIONALS];
memset(colors, 0, sizeof(colors));
memset(dirs, 0, sizeof(dirs));
for(int i = 0; i < 1+NUMEXTRADIRECTIONALS; i++)
dirs[i].power = 1.0f;
float power = Power.Get();
Color speccol = SpecColor.Get();
colors[0].red = speccol.r;
colors[0].green = speccol.g;
colors[0].blue = speccol.b;
dirs[0].dir = pDirect->getFrame()->getLTM()->at;
dirs[0].power = power;
for(int i = 0; i < NUMEXTRADIRECTIONALS; i++){
if(pExtraDirectionals[i]->getFlags() & rw::Light::LIGHTATOMICS){
colors[1+i] = pExtraDirectionals[i]->color;
dirs[1+i].dir = pExtraDirectionals[i]->getFrame()->getLTM()->at;
dirs[1+i].power = power*2.0f;
}
}
glUniform4fv(U(u_specDir), 1 + NUMEXTRADIRECTIONALS, (float*)&dirs);
glUniform4fv(U(u_specColor), 1 + NUMEXTRADIRECTIONALS, (float*)&colors);
}
static void
vehicleRenderCB(rw::Atomic *atomic, rw::gl3::InstanceDataHeader *header)
{
using namespace rw;
using namespace rw::gl3;
// TODO: make this less of a kludge
if(VehiclePipeSwitch == VEHICLEPIPE_MATFX){
matFXGlobals.pipelines[rw::platform]->render(atomic);
return;
}
Material *m;
rw::uint32 flags = atomic->geometry->flags;
setWorldMatrix(atomic->getFrame()->getLTM());
lightingCB(atomic);
setupVertexInput(header);
InstanceData *inst = header->inst;
rw::int32 n = header->numMeshes;
neoVehicleShader->use();
V3d eyePos = rw::engine->currentCamera->getFrame()->getLTM()->pos;
glUniform3fv(U(u_eye), 1, (float*)&eyePos);
uploadSpecLights();
float reflProps[4];
reflProps[0] = Fresnel.Get();
reflProps[1] = SpecColor.Get().a;
setTexture(1, EnvMapTex);
SetRenderState(SRCBLEND, BLENDONE);
while(n--){
m = inst->material;
setMaterial(flags, m->color, m->surfaceProps);
setTexture(0, m->texture);
rw::SetRenderState(VERTEXALPHA, inst->vertexAlpha || m->color.alpha != 0xFF);
reflProps[2] = m->surfaceProps.specular * VehicleShininess;
reflProps[3] = m->surfaceProps.specular == 0.0f ? 0.0f : VehicleSpecularity;
glUniform4fv(U(u_reflProps), 1, reflProps);
drawInst(header, inst);
inst++;
}
SetRenderState(SRCBLEND, BLENDSRCALPHA);
setTexture(1, nil);
teardownVertexInput(header);
}
void
CreateVehiclePipe(void)
{
using namespace rw;
using namespace rw::gl3;
if(CFileMgr::LoadFile("neo/carTweakingTable.dat", work_buff, sizeof(work_buff), "r") <= 0)
printf("Error: couldn't open 'neo/carTweakingTable.dat'\n");
else{
char *fp = (char*)work_buff;
fp = ReadTweakValueTable(fp, Fresnel);
fp = ReadTweakValueTable(fp, Power);
fp = ReadTweakValueTable(fp, DiffColor);
fp = ReadTweakValueTable(fp, SpecColor);
}
{
#include "shaders/obj/neoVehicle_frag.inc"
#include "shaders/obj/neoVehicle_vert.inc"
const char *vs[] = { shaderDecl, "#define DIRECTIONALS\n", header_vert_src, neoVehicle_vert_src, nil };
const char *fs[] = { shaderDecl, header_frag_src, neoVehicle_frag_src, nil };
neoVehicleShader = Shader::create(vs, fs);
assert(neoVehicleShader);
}
rw::gl3::ObjPipeline *pipe = rw::gl3::ObjPipeline::create();
pipe->instanceCB = rw::gl3::defaultInstanceCB;
pipe->uninstanceCB = nil;
pipe->renderCB = vehicleRenderCB;
vehiclePipe = pipe;
}
void
DestroyVehiclePipe(void)
{
neoVehicleShader->destroy();
neoVehicleShader = nil;
((rw::gl3::ObjPipeline*)vehiclePipe)->destroy();
vehiclePipe = nil;
}
/*
* Neo World pipe
*/
rw::gl3::Shader *neoWorldShader;
static void
worldRenderCB(rw::Atomic *atomic, rw::gl3::InstanceDataHeader *header)
{
using namespace rw;
using namespace rw::gl3;
if(!LightmapEnable){
gl3::defaultRenderCB(atomic, header);
return;
}
Material *m;
setWorldMatrix(atomic->getFrame()->getLTM());
lightingCB(atomic);
setupVertexInput(header);
InstanceData *inst = header->inst;
rw::int32 n = header->numMeshes;
neoWorldShader->use();
float lightfactor[4];
while(n--){
m = inst->material;
if(MatFX::getEffects(m) == MatFX::DUAL){
MatFX *matfx = MatFX::get(m);
Texture *dualtex = matfx->getDualTexture();
if(dualtex == nil)
goto notex;
setTexture(1, dualtex);
lightfactor[0] = lightfactor[1] = lightfactor[2] = WorldLightmapBlend.Get()*LightmapMult;
}else{
notex:
setTexture(1, nil);
lightfactor[0] = lightfactor[1] = lightfactor[2] = 0.0f;
}
lightfactor[3] = m->color.alpha/255.0f;
glUniform4fv(U(u_lightMap), 1, lightfactor);
RGBA color = { 255, 255, 255, m->color.alpha };
setMaterial(color, m->surfaceProps);
setTexture(0, m->texture);
rw::SetRenderState(VERTEXALPHA, inst->vertexAlpha || m->color.alpha != 0xFF);
drawInst(header, inst);
inst++;
}
setTexture(1, nil);
teardownVertexInput(header);
}
void
CreateWorldPipe(void)
{
using namespace rw;
using namespace rw::gl3;
if(CFileMgr::LoadFile("neo/worldTweakingTable.dat", work_buff, sizeof(work_buff), "r") <= 0)
printf("Error: couldn't open 'neo/worldTweakingTable.dat'\n");
else
ReadTweakValueTable((char*)work_buff, WorldLightmapBlend);
{
#include "shaders/obj/neoWorldIII_frag.inc"
#include "shaders/obj/default_UV2_vert.inc"
const char *vs[] = { shaderDecl, header_vert_src, default_UV2_vert_src, nil };
const char *fs[] = { shaderDecl, header_frag_src, neoWorldIII_frag_src, nil };
neoWorldShader = Shader::create(vs, fs);
assert(neoWorldShader);
}
rw::gl3::ObjPipeline *pipe = rw::gl3::ObjPipeline::create();
pipe->instanceCB = rw::gl3::defaultInstanceCB;
pipe->uninstanceCB = nil;
pipe->renderCB = worldRenderCB;
worldPipe = pipe;
}
void
DestroyWorldPipe(void)
{
neoWorldShader->destroy();
neoWorldShader = nil;
((rw::gl3::ObjPipeline*)worldPipe)->destroy();
worldPipe = nil;
}
/*
* Neo Gloss pipe
*/
rw::gl3::Shader *neoGlossShader;
static void
glossRenderCB(rw::Atomic *atomic, rw::gl3::InstanceDataHeader *header)
{
using namespace rw;
using namespace rw::gl3;
worldRenderCB(atomic, header);
if(!GlossEnable)
return;
Material *m;
setupVertexInput(header);
InstanceData *inst = header->inst;
rw::int32 n = header->numMeshes;
neoGlossShader->use();
V3d eyePos = rw::engine->currentCamera->getFrame()->getLTM()->pos;
glUniform3fv(U(u_eye), 1, (float*)&eyePos);
float reflProps[4];
reflProps[0] = GlossMult;
reflProps[1] = 0.0f;
reflProps[2] = 0.0f;
reflProps[3] = 0.0f;
glUniform4fv(U(u_reflProps), 1, reflProps);
SetRenderState(VERTEXALPHA, TRUE);
SetRenderState(SRCBLEND, BLENDONE);
SetRenderState(DESTBLEND, BLENDONE);
SetRenderState(ZWRITEENABLE, FALSE);
SetRenderState(ALPHATESTFUNC, ALPHAALWAYS);
while(n--){
m = inst->material;
RGBA color = { 255, 255, 255, m->color.alpha };
setMaterial(color, m->surfaceProps);
if(m->texture){
Texture *tex = GetGlossTex(m);
if(tex){
setTexture(0, tex);
drawInst(header, inst);
}
}
inst++;
}
SetRenderState(ZWRITEENABLE, TRUE);
SetRenderState(ALPHATESTFUNC, ALPHAGREATEREQUAL);
SetRenderState(SRCBLEND, BLENDSRCALPHA);
SetRenderState(DESTBLEND, BLENDINVSRCALPHA);
teardownVertexInput(header);
}
void
CreateGlossPipe(void)
{
using namespace rw;
using namespace rw::gl3;
{
#include "shaders/obj/neoGloss_frag.inc"
#include "shaders/obj/neoGloss_vert.inc"
const char *vs[] = { shaderDecl, header_vert_src, neoGloss_vert_src, nil };
const char *fs[] = { shaderDecl, header_frag_src, neoGloss_frag_src, nil };
neoGlossShader = Shader::create(vs, fs);
assert(neoGlossShader);
}
rw::gl3::ObjPipeline *pipe = rw::gl3::ObjPipeline::create();
pipe->instanceCB = rw::gl3::defaultInstanceCB;
pipe->uninstanceCB = nil;
pipe->renderCB = glossRenderCB;
glossPipe = pipe;
}
void
DestroyGlossPipe(void)
{
neoGlossShader->destroy();
neoGlossShader = nil;
((rw::gl3::ObjPipeline*)glossPipe)->destroy();
glossPipe = nil;
}
/*
* Neo Rim pipes
*/
rw::gl3::Shader *neoRimShader;
rw::gl3::Shader *neoRimSkinShader;
static void
uploadRimData(bool enable)
{
using namespace rw;
using namespace rw::gl3;
V3d viewVec = rw::engine->currentCamera->getFrame()->getLTM()->at;
glUniform3fv(U(u_viewVec), 1, (float*)&viewVec);
float rimData[4];
rimData[0] = Offset.Get();
rimData[1] = Scale.Get();
if(enable)
rimData[2] = Scaling.Get()*RimlightMult;
else
rimData[2] = 0.0f;
rimData[3] = 0.0f;
glUniform3fv(U(u_rimData), 1, rimData);
Color col = RampStart.Get();
glUniform4fv(U(u_rampStart), 1, (float*)&col);
col = RampEnd.Get();
glUniform4fv(U(u_rampEnd), 1, (float*)&col);
}
static void
rimSkinRenderCB(rw::Atomic *atomic, rw::gl3::InstanceDataHeader *header)
{
using namespace rw;
using namespace rw::gl3;
if(!RimlightEnable){
gl3::skinRenderCB(atomic, header);
return;
}
Material *m;
rw::uint32 flags = atomic->geometry->flags;
setWorldMatrix(atomic->getFrame()->getLTM());
lightingCB(atomic);
setupVertexInput(header);
InstanceData *inst = header->inst;
rw::int32 n = header->numMeshes;
neoRimSkinShader->use();
uploadRimData(atomic->geometry->flags & Geometry::LIGHT);
uploadSkinMatrices(atomic);
while(n--){
m = inst->material;
setMaterial(flags, m->color, m->surfaceProps);
setTexture(0, m->texture);
rw::SetRenderState(VERTEXALPHA, inst->vertexAlpha || m->color.alpha != 0xFF);
drawInst(header, inst);
inst++;
}
teardownVertexInput(header);
}
static void
rimRenderCB(rw::Atomic *atomic, rw::gl3::InstanceDataHeader *header)
{
using namespace rw;
using namespace rw::gl3;
if(!RimlightEnable){
gl3::defaultRenderCB(atomic, header);
return;
}
Material *m;
rw::uint32 flags = atomic->geometry->flags;
setWorldMatrix(atomic->getFrame()->getLTM());
lightingCB(atomic);
setupVertexInput(header);
InstanceData *inst = header->inst;
rw::int32 n = header->numMeshes;
neoRimShader->use();
uploadRimData(atomic->geometry->flags & Geometry::LIGHT);
while(n--){
m = inst->material;
setMaterial(flags, m->color, m->surfaceProps);
setTexture(0, m->texture);
rw::SetRenderState(VERTEXALPHA, inst->vertexAlpha || m->color.alpha != 0xFF);
drawInst(header, inst);
inst++;
}
teardownVertexInput(header);
}
void
CreateRimLightPipes(void)
{
using namespace rw::gl3;
if(CFileMgr::LoadFile("neo/rimTweakingTable.dat", work_buff, sizeof(work_buff), "r") <= 0)
printf("Error: couldn't open 'neo/rimTweakingTable.dat'\n");
else{
char *fp = (char*)work_buff;
fp = ReadTweakValueTable(fp, RampStart);
fp = ReadTweakValueTable(fp, RampEnd);
fp = ReadTweakValueTable(fp, Offset);
fp = ReadTweakValueTable(fp, Scale);
fp = ReadTweakValueTable(fp, Scaling);
}
{
#include "shaders/obj/simple_frag.inc"
#include "shaders/obj/neoRimSkin_vert.inc"
const char *vs[] = { shaderDecl, "#define DIRECTIONALS\n", header_vert_src, neoRimSkin_vert_src, nil };
const char *fs[] = { shaderDecl, header_frag_src, simple_frag_src, nil };
neoRimSkinShader = Shader::create(vs, fs);
assert(neoRimSkinShader);
}
{
#include "shaders/obj/simple_frag.inc"
#include "shaders/obj/neoRim_vert.inc"
const char *vs[] = { shaderDecl, "#define DIRECTIONALS\n", header_vert_src, neoRim_vert_src, nil };
const char *fs[] = { shaderDecl, header_frag_src, simple_frag_src, nil };
neoRimShader = Shader::create(vs, fs);
assert(neoRimShader);
}
rw::gl3::ObjPipeline *pipe = rw::gl3::ObjPipeline::create();
pipe->instanceCB = rw::gl3::defaultInstanceCB;
pipe->uninstanceCB = nil;
pipe->renderCB = rimRenderCB;
rimPipe = pipe;
pipe = rw::gl3::ObjPipeline::create();
pipe->instanceCB = rw::gl3::skinInstanceCB;
pipe->uninstanceCB = nil;
pipe->renderCB = rimSkinRenderCB;
rimSkinPipe = pipe;
}
void
DestroyRimLightPipes(void)
{
neoRimShader->destroy();
neoRimShader = nil;
neoRimSkinShader->destroy();
neoRimSkinShader = nil;
((rw::gl3::ObjPipeline*)rimPipe)->destroy();
rimPipe = nil;
((rw::gl3::ObjPipeline*)rimSkinPipe)->destroy();
rimSkinPipe = nil;
}
void
CustomPipeRegisterGL(void)
{
u_viewVec = rw::gl3::registerUniform("u_viewVec");
u_rampStart = rw::gl3::registerUniform("u_rampStart");
u_rampEnd = rw::gl3::registerUniform("u_rampEnd");
u_rimData = rw::gl3::registerUniform("u_rimData");
u_lightMap = rw::gl3::registerUniform("u_lightMap");
u_eye = rw::gl3::registerUniform("u_eye");
u_reflProps = rw::gl3::registerUniform("u_reflProps");
u_specDir = rw::gl3::registerUniform("u_specDir");
u_specColor = rw::gl3::registerUniform("u_specColor");
}
}
#endif
#ifdef NEW_RENDERER
#ifndef LIBRW
#error "Need librw for NEW_PIPELINES"
#endif
namespace WorldRender
{
struct BuildingInst
{
rw::Matrix matrix;
rw::gl3::InstanceDataHeader *instHeader;
uint32 cullMode;
uint8 fadeAlpha;
bool lighting;
};
BuildingInst blendInsts[3][2000];
int numBlendInsts[3];
static RwRGBAReal black;
static bool
IsTextureTransparent(RwTexture *tex)
{
if(tex == nil || tex->raster == nil)
return false;
return PLUGINOFFSET(rw::gl3::Gl3Raster, tex->raster, rw::gl3::nativeRasterOffset)->hasAlpha;
}
// Render all opaque meshes and put atomics that needs blending
// into the deferred list.
void
AtomicFirstPass(RpAtomic *atomic, int pass)
{
using namespace rw;
using namespace rw::gl3;
BuildingInst *building = &blendInsts[pass][numBlendInsts[pass]];
atomic->getPipeline()->instance(atomic);
building->instHeader = (gl3::InstanceDataHeader*)atomic->geometry->instData;
assert(building->instHeader != nil);
assert(building->instHeader->platform == PLATFORM_GL3);
building->fadeAlpha = 255;
building->lighting = !!(atomic->geometry->flags & rw::Geometry::LIGHT);
building->cullMode = rw::GetRenderState(rw::CULLMODE);
rw::uint32 flags = atomic->geometry->flags;
WorldLights lights;
lights.numAmbients = 1;
lights.numDirectionals = 0;
lights.numLocals = 0;
if(building->lighting)
lights.ambient = pAmbient->color;
else
lights.ambient = black;
bool setupDone = false;
bool defer = false;
building->matrix = *atomic->getFrame()->getLTM();
InstanceData *inst = building->instHeader->inst;
for(rw::uint32 i = 0; i < building->instHeader->numMeshes; i++, inst++){
Material *m = inst->material;
if(inst->vertexAlpha || m->color.alpha != 255 ||
IsTextureTransparent(m->texture)){
defer = true;
continue;
}
// alright we're rendering this atomic
if(!setupDone){
rw::SetRenderState(rw::CULLMODE, building->cullMode);
defaultShader->use();
setWorldMatrix(&building->matrix);
setupVertexInput(building->instHeader);
setLights(&lights);
setupDone = true;
}
setMaterial(flags, m->color, m->surfaceProps);
setTexture(0, m->texture);
drawInst(building->instHeader, inst);
}
teardownVertexInput(building->instHeader);
if(defer)
numBlendInsts[pass]++;
}
void
AtomicFullyTransparent(RpAtomic *atomic, int pass, int fadeAlpha)
{
using namespace rw;
using namespace rw::gl3;
BuildingInst *building = &blendInsts[pass][numBlendInsts[pass]];
atomic->getPipeline()->instance(atomic);
building->instHeader = (gl3::InstanceDataHeader*)atomic->geometry->instData;
assert(building->instHeader != nil);
assert(building->instHeader->platform == PLATFORM_GL3);
building->fadeAlpha = fadeAlpha;
building->lighting = !!(atomic->geometry->flags & rw::Geometry::LIGHT);
building->cullMode = rw::GetRenderState(rw::CULLMODE);
building->matrix = *atomic->getFrame()->getLTM();
numBlendInsts[pass]++;
}
void
RenderBlendPass(int pass)
{
using namespace rw;
using namespace rw::gl3;
defaultShader->use();
WorldLights lights;
lights.numAmbients = 1;
lights.numDirectionals = 0;
lights.numLocals = 0;
int i;
for(i = 0; i < numBlendInsts[pass]; i++){
BuildingInst *building = &blendInsts[pass][i];
rw::SetRenderState(rw::CULLMODE, building->cullMode);
setupVertexInput(building->instHeader);
setWorldMatrix(&building->matrix);
if(building->lighting)
lights.ambient = pAmbient->color;
else
lights.ambient = black;
setLights(&lights);
InstanceData *inst = building->instHeader->inst;
for(rw::uint32 j = 0; j < building->instHeader->numMeshes; j++, inst++){
Material *m = inst->material;
if(!inst->vertexAlpha && m->color.alpha == 255 && !IsTextureTransparent(m->texture) && building->fadeAlpha == 255)
continue; // already done this one
rw::RGBA color = m->color;
color.alpha = (color.alpha * building->fadeAlpha)/255;
setMaterial(color, m->surfaceProps); // always modulate here
setTexture(0, m->texture);
drawInst(building->instHeader, inst);
}
teardownVertexInput(building->instHeader);
}
}
}
#endif
#endif