re3/src/math/math.cpp

206 lines
5.6 KiB
C++

#include "common.h"
#include "Quaternion.h"
// TODO: move more stuff into here
void
CVector2D::Normalise(void)
{
float sq = MagnitudeSqr();
assert(sq != 0.0f); // just be safe here
//if(sq > 0.0f){
float invsqrt = RecipSqrt(sq);
x *= invsqrt;
y *= invsqrt;
//}else
// x = 1.0f;
}
void
CMatrix::SetRotate(float xAngle, float yAngle, float zAngle)
{
float cX = Cos(xAngle);
float sX = Sin(xAngle);
float cY = Cos(yAngle);
float sY = Sin(yAngle);
float cZ = Cos(zAngle);
float sZ = Sin(zAngle);
m_matrix.right.x = cZ * cY - (sZ * sX) * sY;
m_matrix.right.y = (cZ * sX) * sY + sZ * cY;
m_matrix.right.z = -cX * sY;
m_matrix.up.x = -sZ * cX;
m_matrix.up.y = cZ * cX;
m_matrix.up.z = sX;
m_matrix.at.x = (sZ * sX) * cY + cZ * sY;
m_matrix.at.y = sZ * sY - (cZ * sX) * cY;
m_matrix.at.z = cX * cY;
m_matrix.pos.x = 0.0f;
m_matrix.pos.y = 0.0f;
m_matrix.pos.z = 0.0f;
}
void
CMatrix::Rotate(float x, float y, float z)
{
// TODO? do this directly without creating another matrix
CMatrix rot;
rot.SetRotate(x, y, z);
*this = rot * *this;
}
void
CMatrix::RotateX(float x)
{
Rotate(x, 0.0f, 0.0f);
}
void
CMatrix::RotateZ(float z)
{
Rotate(0.0f, 0.0f, z);
}
void
CMatrix::Reorthogonalise(void)
{
CVector &r = GetRight();
CVector &f = GetForward();
CVector &u = GetUp();
u = CrossProduct(r, f);
u.Normalise();
r = CrossProduct(f, u);
r.Normalise();
f = CrossProduct(u, r);
}
CMatrix&
Invert(const CMatrix &src, CMatrix &dst)
{
// GTA handles this as a raw 4x4 orthonormal matrix
// and trashes the RW flags, let's not do that
// actual copy of librw code:
RwMatrix *d = &dst.m_matrix;
const RwMatrix *s = &src.m_matrix;
d->right.x = s->right.x;
d->right.y = s->up.x;
d->right.z = s->at.x;
d->up.x = s->right.y;
d->up.y = s->up.y;
d->up.z = s->at.y;
d->at.x = s->right.z;
d->at.y = s->up.z;
d->at.z = s->at.z;
d->pos.x = -(s->pos.x*s->right.x +
s->pos.y*s->right.y +
s->pos.z*s->right.z);
d->pos.y = -(s->pos.x*s->up.x +
s->pos.y*s->up.y +
s->pos.z*s->up.z);
d->pos.z = -(s->pos.x*s->at.x +
s->pos.y*s->at.y +
s->pos.z*s->at.z);
d->flags = rwMATRIXTYPEORTHONORMAL;
return dst;
}
CVector
operator*(const CMatrix &mat, const CVector &vec)
{
return CVector(
mat.m_matrix.right.x * vec.x + mat.m_matrix.up.x * vec.y + mat.m_matrix.at.x * vec.z + mat.m_matrix.pos.x,
mat.m_matrix.right.y * vec.x + mat.m_matrix.up.y * vec.y + mat.m_matrix.at.y * vec.z + mat.m_matrix.pos.y,
mat.m_matrix.right.z * vec.x + mat.m_matrix.up.z * vec.y + mat.m_matrix.at.z * vec.z + mat.m_matrix.pos.z);
}
CMatrix
operator*(const CMatrix &m1, const CMatrix &m2)
{
CMatrix out;
RwMatrix *dst = &out.m_matrix;
const RwMatrix *src1 = &m1.m_matrix;
const RwMatrix *src2 = &m2.m_matrix;
dst->right.x = src1->right.x*src2->right.x + src1->up.x*src2->right.y + src1->at.x*src2->right.z;
dst->right.y = src1->right.y*src2->right.x + src1->up.y*src2->right.y + src1->at.y*src2->right.z;
dst->right.z = src1->right.z*src2->right.x + src1->up.z*src2->right.y + src1->at.z*src2->right.z;
dst->up.x = src1->right.x*src2->up.x + src1->up.x*src2->up.y + src1->at.x*src2->up.z;
dst->up.y = src1->right.y*src2->up.x + src1->up.y*src2->up.y + src1->at.y*src2->up.z;
dst->up.z = src1->right.z*src2->up.x + src1->up.z*src2->up.y + src1->at.z*src2->up.z;
dst->at.x = src1->right.x*src2->at.x + src1->up.x*src2->at.y + src1->at.x*src2->at.z;
dst->at.y = src1->right.y*src2->at.x + src1->up.y*src2->at.y + src1->at.y*src2->at.z;
dst->at.z = src1->right.z*src2->at.x + src1->up.z*src2->at.y + src1->at.z*src2->at.z;
dst->pos.x = src1->right.x*src2->pos.x + src1->up.x*src2->pos.y + src1->at.x*src2->pos.z + src1->pos.x;
dst->pos.y = src1->right.y*src2->pos.x + src1->up.y*src2->pos.y + src1->at.y*src2->pos.z + src1->pos.y;
dst->pos.z = src1->right.z*src2->pos.x + src1->up.z*src2->pos.y + src1->at.z*src2->pos.z + src1->pos.z;
return out;
}
const CVector
Multiply3x3(const CMatrix &mat, const CVector &vec)
{
return CVector(
mat.m_matrix.right.x * vec.x + mat.m_matrix.up.x * vec.y + mat.m_matrix.at.x * vec.z,
mat.m_matrix.right.y * vec.x + mat.m_matrix.up.y * vec.y + mat.m_matrix.at.y * vec.z,
mat.m_matrix.right.z * vec.x + mat.m_matrix.up.z * vec.y + mat.m_matrix.at.z * vec.z);
}
const CVector
Multiply3x3(const CVector &vec, const CMatrix &mat)
{
return CVector(
mat.m_matrix.right.x * vec.x + mat.m_matrix.right.y * vec.y + mat.m_matrix.right.z * vec.z,
mat.m_matrix.up.x * vec.x + mat.m_matrix.up.y * vec.y + mat.m_matrix.up.z * vec.z,
mat.m_matrix.at.x * vec.x + mat.m_matrix.at.y * vec.y + mat.m_matrix.at.z * vec.z);
}
void
CQuaternion::Slerp(const CQuaternion &q1, const CQuaternion &q2, float theta, float invSin, float t)
{
if(theta == 0.0f)
*this = q2;
else{
float w1, w2;
if(theta > PI/2){
theta = PI - theta;
w1 = Sin((1.0f - t) * theta) * invSin;
w2 = -Sin(t * theta) * invSin;
}else{
w1 = Sin((1.0f - t) * theta) * invSin;
w2 = Sin(t * theta) * invSin;
}
*this = w1*q1 + w2*q2;
}
}
void
CQuaternion::Get(RwMatrix *matrix)
{
float x2 = x+x;
float y2 = y+y;
float z2 = z+z;
float x_2x = x * x2;
float x_2y = x * y2;
float x_2z = x * z2;
float y_2y = y * y2;
float y_2z = y * z2;
float z_2z = z * z2;
float w_2x = w * x2;
float w_2y = w * y2;
float w_2z = w * z2;
matrix->right.x = 1.0f - (y_2y + z_2z);
matrix->up.x = x_2y - w_2z;
matrix->at.x = x_2z + w_2y;
matrix->right.y = x_2y + w_2z;
matrix->up.y = 1.0f - (x_2x + z_2z);
matrix->at.y = y_2z - w_2x;
matrix->right.z = x_2z - w_2y;
matrix->up.z = y_2z + w_2x;
matrix->at.z = 1.0f - (x_2x + y_2y);
}