winamp/Src/Plugins/DSP/sc_serv3/filenameMetadata.cpp

682 lines
18 KiB
C++
Raw Normal View History

2024-09-24 12:54:57 +00:00
#include "filenameMetadata.h"
#include "metadata.h"
#include "stl/stringUtils.h"
#include "macros.h"
#include <functional>
#include <algorithm>
#include <string>
#include <list>
#include <assert.h>
using namespace std;
using namespace uniString;
using namespace stringUtil;
/*
Overview of how it works:
The setPattern() method looks at the pattern string and builds a stack of parseState objects.
Each of these objects are responsible for finding their associated pattern within a text range.
parsing is done right to left.
the parseState_optional object is used to encapsulate other state objects that are
optional (bracketed by [] in the pattern).
*/
class filenameMetadata::impl
{
// to make unicode compatibility easier, we're just going to store things as utf32
utf32 m_pattern;
utf32 m_data;
// put the map will be in utf 8
typedef map<utf8,utf8> tokenMap_t;
tokenMap_t m_tokens;
class parseState;
typedef list<parseState*> parseStack_t;
parseStack_t m_parseStack;
static void clearparseStack(parseStack_t &ps) throw()
{
while (!ps.empty())
{
delete ps.back();
ps.pop_back();
}
}
void clearparseStack() throw() { clearparseStack(m_parseStack); }
///////////// parse states //////////////////////////
class parseState // virtual base
{
public:
typedef utf32::const_reverse_iterator range_e;
typedef pair<range_e, range_e> range_t;
virtual ~parseState() throw() {}
virtual range_t findRange(range_e rbegin, range_e rend) throw() { return make_pair(rbegin, rend); }
virtual void setFromRange(range_e /*rbegin*/, range_e /*rend*/) throw() {}
virtual void reportValue(tokenMap_t &/*tm*/) const throw() {}
virtual utf8 describe() const throw() = 0; // for diagnostics
virtual void reset() throw() {}
virtual bool optional() const throw() { return false; }
virtual bool finite() const throw() { return false; } // fixed width match
};
class parseState_optional: public parseState
{
parseStack_t m_parseStack;
public:
parseState_optional(){}
~parseState_optional() throw() { clearparseStack(m_parseStack); }
parseStack_t* stack() throw() { return &m_parseStack; }
virtual bool optional() const throw() { return true; }
virtual void reset() throw()
{
for_each(m_parseStack.begin(), m_parseStack.end(), mem_fun(&parseState::reset));
}
virtual utf8 describe() const throw()
{
utf8 result("[");
for (parseStack_t::const_iterator i = m_parseStack.begin(); i != m_parseStack.end(); ++i)
{
result += (*i)->describe();
}
result = result + utf8("]");
return result;
}
virtual range_t findRange(range_e rbegin,range_e rend) throw()
{
const range_t NOTFOUND(make_pair(rend, rend));
range_t result;
reset();
if (m_parseStack.empty())
{
return NOTFOUND;
}
parseStack_t::reverse_iterator s_cur = m_parseStack.rbegin();
parseStack_t::reverse_iterator s_nxt = s_cur;
++s_nxt;
range_e data_start = rbegin;
range_e data_end = rend;
range_e last_restart = rbegin;
bool first(true);
while (s_cur != m_parseStack.rend())
{
if (data_start == data_end)
{
reset();
return NOTFOUND;
}
range_t curR(NOTFOUND);
range_t nxtR(NOTFOUND);
curR = (*s_cur)->findRange(data_start,data_end);
if (curR.first == data_end)
{
reset();
return NOTFOUND;
}
if ((!first) && (curR.first != data_start))
{
// must abut. Try moving forward again
reset();
s_cur = m_parseStack.rbegin();
s_nxt = s_cur;
++s_nxt;
++last_restart;
data_start = last_restart;
first = true;
continue;
}
if (first)
{
result.first = curR.first;
}
first = false;
// don't do this if we have a single character state followed
// by anything (in particular, a string which eats all
if (curR.first + 1 != curR.second)
{
if (s_nxt != m_parseStack.rend())
{
nxtR = (*s_nxt)->findRange(data_start,data_end);
}
if (nxtR.first < curR.second)
{
curR.second = nxtR.first;
}
}
(*s_cur)->setFromRange(curR.first,curR.second);
s_cur = s_nxt;
if (s_nxt != m_parseStack.rend())
{
++s_nxt;
}
data_start = curR.second;
}
result.second = data_start;
return result;
}
virtual void setFromRange(utf32::const_reverse_iterator rbegin, utf32::const_reverse_iterator rend) throw()
{
findRange(rbegin, rend); // resets to restricted range if necessary
}
virtual void reportValue(tokenMap_t &tm) const throw()
{
for (parseStack_t::const_iterator i = m_parseStack.begin(); i != m_parseStack.end(); ++i)
{
(*i)->reportValue(tm);
}
}
virtual bool finite() const throw()
{
bool result = true;
for (parseStack_t::const_iterator i = m_parseStack.begin(); i != m_parseStack.end(); ++i)
{
result &= (*i)->finite();
}
return result;
}
};
class parseState_char: public parseState
{
utf32::value_type m_char;
public:
explicit parseState_char(utf32::value_type c) : m_char(c){}
virtual pair<utf32::const_reverse_iterator,utf32::const_reverse_iterator>
findRange(utf32::const_reverse_iterator rbegin,utf32::const_reverse_iterator rend) throw()
{
for (utf32::const_reverse_iterator i = rbegin; i != rend; ++i)
{
if ((*i) == m_char)
{
return make_pair(i, i + 1);
}
}
return make_pair(rend,rend);
}
virtual utf8 describe() const throw()
{
utf32 u32; u32.push_back(m_char);
return u32.toUtf8();
}
virtual bool finite() const throw() { return true; }
};
class parseState_stringSymbol: public parseState
{
utf8 m_symbolName; // can be empty for any string
utf32 m_value;
public:
parseState_stringSymbol() throw(){}
explicit parseState_stringSymbol(const string &s) throw() : m_symbolName(s){}
~parseState_stringSymbol() throw(){}
void reset() throw() { m_value.clear(); }
void setFromRange(utf32::const_reverse_iterator rbegin,utf32::const_reverse_iterator rend) throw()
{
if (!m_symbolName.empty())
{
m_value.clear();
m_value.insert(m_value.begin(),rbegin,rend);
reverse(m_value.begin(),m_value.end());
m_value = stripWhitespace(m_value);
}
}
virtual void reportValue(tokenMap_t &tm) const throw()
{
if (!m_symbolName.empty() && !m_value.empty())
{
tm[m_symbolName] = m_value.toUtf8();
}
}
virtual utf8 describe() const throw()
{
if (m_symbolName.empty()) return utf8("*");
return utf8("%") + m_symbolName;
}
};
class parseState_digits: public parseState
{
public:
parseState_digits() throw(){}
virtual range_t findRange(range_e rbegin,range_e rend) throw()
{
range_t result(make_pair(rend,rend));
bool got_start = false;
for (utf32::const_reverse_iterator i = rbegin; i != rend; ++i)
{
if (uniString::is_a_number(*i))
{
if (!got_start)
{
got_start = true;
result.first = i;
}
}
else
{
if (got_start)
{
result.second = i;
return result;
}
}
}
return result;
}
virtual utf8 describe() const throw() { return utf8("%#"); }
};
class parseState_year: public parseState
{
utf32 m_value;
public:
parseState_year() throw(){}
~parseState_year() throw(){}
void reset() throw() { m_value.clear(); }
virtual pair<utf32::const_reverse_iterator,utf32::const_reverse_iterator>
findRange(utf32::const_reverse_iterator rbegin,utf32::const_reverse_iterator rend) throw()
{
int count = 4;
pair<utf32::const_reverse_iterator,utf32::const_reverse_iterator> result(make_pair(rend,rend));
bool got_start = false;
for (utf32::const_reverse_iterator i = rbegin; i != rend; ++i)
{
if (uniString::is_a_number(*i))
{
if (!got_start)
{
got_start = true;
result.first = i;
}
count -= 1;
if (count == 0)
{
result.second = ++i;
return result;
}
}
else
{
if (got_start)
{
got_start = false;
result.first = rend;
}
}
}
return make_pair(rend,rend);
}
void setFromRange(utf32::const_reverse_iterator rbegin,utf32::const_reverse_iterator rend) throw()
{
m_value.clear();
m_value.insert(m_value.begin(),rbegin,rend);
reverse(m_value.begin(),m_value.end());
}
virtual void reportValue(tokenMap_t &tm) const throw()
{
if (!m_value.empty())
{
tm[utf8(metadata::YEAR())] = m_value.toUtf8();
}
}
virtual utf8 describe() const throw() { return utf8("%YEAR"); }
virtual bool finite() const throw() { return true; }
};
class parseState_fixed: public parseState
{
utf32 m_value;
public:
// fixed string
explicit parseState_fixed(const utf32 &val) throw() : m_value(val) {}
~parseState_fixed() throw(){}
virtual pair<utf32::const_reverse_iterator,utf32::const_reverse_iterator>
findRange(utf32::const_reverse_iterator rbegin,utf32::const_reverse_iterator rend) throw()
{
assert(!m_value.empty());
if (m_value.empty()) return make_pair(rend,rend);
for (utf32::const_reverse_iterator i = rbegin; i != rend; ++i)
{
if ((*i) == (*(m_value.rbegin())))
{
utf32::const_reverse_iterator t_i = i;
utf32::const_reverse_iterator v_i = m_value.rbegin();
utf32::const_reverse_iterator v_i_end = m_value.rend();
bool match(true);
for (; match && (v_i != v_i_end); ++t_i, ++v_i)
{
if ((t_i == rend) || ((*t_i) != (*v_i)))
{
match = false;
}
}
if (match)
{
return make_pair(i, i + m_value.size());
}
}
}
return make_pair(rend,rend);
}
virtual utf8 describe() const throw()
{
return m_value.toUtf8();
}
virtual bool finite() const throw() { return true; }
};
static string stringify(utf32::value_type v) throw()
{
if (v >= '0' && v <= 'z') return string(1,(string::value_type)v);
return tos((int)v);
}
public:
impl(){}
~impl() throw()
{
clearparseStack();
}
void deleteToken(const utf8 &token) throw()
{
tokenMap_t::iterator i = m_tokens.find(token);
if (i != m_tokens.end()) m_tokens.erase(i);
}
const tokenMap_t::size_type countTokens() const throw() { return m_tokens.size(); }
utf8& operator[](const utf8 &key) throw() { return m_tokens[key]; }
const map<utf8,utf8>& getTokens() const throw() { return m_tokens; }
void setPattern(const utf8 &pattern) throw(runtime_error)
{
parseState_optional *opt = 0;
parseStack_t *stack = &m_parseStack;
try
{
utf32 fixedAccumulator; // fixed string value
#define DUMPACCUMULATOR { if (!fixedAccumulator.empty()) { stack->push_back(new parseState_fixed(fixedAccumulator)); fixedAccumulator.clear(); } }
clearparseStack();
m_pattern.assign(pattern);
for (utf32::const_iterator i = m_pattern.begin(); i != m_pattern.end(); ++i)
{
if ((*i) == ']')
{
DUMPACCUMULATOR
if (!opt) throw runtime_error("Unmatched ']' in pattern");
stack = &m_parseStack;
stack->push_back(opt);
opt = 0;
}
else if ((*i) == '[')
{
DUMPACCUMULATOR
if (opt) throw runtime_error("Optional sequences cannot be nested in pattern");
opt = new parseState_optional;
stack = opt->stack();
}
else if ((*i) == '%')
{
++i;
if (i == m_pattern.end()) throw runtime_error("Bad pattern. Trailing %");
switch (*i)
{
case 'N': DUMPACCUMULATOR stack->push_back(new parseState_stringSymbol(metadata::NAME())); break;
case 'G': DUMPACCUMULATOR stack->push_back(new parseState_stringSymbol(metadata::GENRE())); break;
case 'A': DUMPACCUMULATOR stack->push_back(new parseState_stringSymbol(metadata::ALBUM())); break;
case 'R': DUMPACCUMULATOR stack->push_back(new parseState_stringSymbol(metadata::ARTIST()));break;
case 'Y': DUMPACCUMULATOR stack->push_back(new parseState_year); break;
case '#': DUMPACCUMULATOR stack->push_back(new parseState_digits); break;
case '%': fixedAccumulator.push_back('%'); break;
default: throw runtime_error("Unknown symbol %" + stringify(*i));
}
}
else if ((*i) == '*')
{
DUMPACCUMULATOR
stack->push_back(new parseState_stringSymbol);
}
else
{
fixedAccumulator.push_back(*i);
}
}
if (opt)
{
throw runtime_error("Unterminated optional sequence in pattern");
}
DUMPACCUMULATOR
}
catch(...)
{
delete opt;
throw;
}
}
static utf8 describeStackRange(parseStack_t::const_reverse_iterator begin,parseStack_t::const_reverse_iterator end) throw()
{
parseStack_t stck(begin,end);
reverse(stck.begin(),stck.end());
utf8 result;
for (parseStack_t::const_iterator i = stck.begin(); i != stck.end(); ++i)
{
result = result + (*i)->describe();
}
return result;
}
static utf8 describeRemainingData(utf32::const_reverse_iterator begin,utf32::const_reverse_iterator end) throw()
{
utf32 u32(begin,end);
reverse(u32.begin(),u32.end());
return u32.toUtf8();
}
void parse(const utf8 &data) throw(runtime_error)
{
m_data.assign(data);
// beginning and end of data string
utf32::const_reverse_iterator data_start = m_data.rbegin();
utf32::const_reverse_iterator data_end = m_data.rend();
// current and next object pointers from the parse stack
parseStack_t::reverse_iterator s_cur = m_parseStack.rbegin();
parseStack_t::reverse_iterator s_nxt = s_cur;
++s_nxt;
while(s_cur != m_parseStack.rend())
{
// if we haven't finished the parse stack, and we're out of data then it's an error
if (data_start == data_end)
{
throw runtime_error("Premature end of data (" + describeStackRange(s_cur,m_parseStack.rend()).hideAsString() + ")");
}
// we do one lookahead. Get the range match for the current parse object and
// the next parse object. Note that there is some added complexity due to optional objects
pair<utf32::const_reverse_iterator,utf32::const_reverse_iterator> curR(make_pair(data_end,data_end));
pair<utf32::const_reverse_iterator,utf32::const_reverse_iterator> nxtR(make_pair(data_end,data_end));
// find widest possible match for current state
curR = (*s_cur)->findRange(data_start,data_end);
// if no match, and the object is optional, just move on to the next (continue)
if ((curR.first == data_end) && (*s_cur)->optional())
{
s_cur = s_nxt;
if (s_nxt != m_parseStack.rend())
{
++s_nxt;
}
continue;
}
// if no match, but object is not optional, then we have an error
if (curR.first == data_end)
{
throw runtime_error("Parse error, symbol not found (" + describeStackRange(s_cur,m_parseStack.rend()).hideAsString() + ") (" + describeRemainingData(data_start,data_end).hideAsString() + ")");
}
// if match was not found at our current starting point, then we have an error
if (curR.first != data_start)
{
throw runtime_error("Parse error, data skipped to find symbol (" + describeStackRange(s_cur,m_parseStack.rend()).hideAsString() + ") (" + describeRemainingData(data_start,data_end).hideAsString() + ")");
}
// restrict match range by one lookahead. Do not do lookahead
// if our current state is a single character match
if (!(*s_cur)->finite()) //curR.first + 1 != curR.second)
{
// we must loop in case the followup objects are optional and we must
// continue to look ahead
while (true)
{
if (s_nxt == m_parseStack.rend()) break;
// to handle the case of two optional string elements in a row, we
// repeat this if the range of the current and follow up objects match by
// incrementing the start
nxtR = (*s_nxt)->findRange(data_start,data_end);
if ((nxtR.first == curR.first) && (!(*s_nxt)->finite()))
{
nxtR = (*s_nxt)->findRange(data_start+1,data_end);
}
if (nxtR.first < curR.second)
{
// lookahead object restricts range
curR.second = nxtR.first;
break;
}
if ((nxtR.first == data_end) && (nxtR.second == data_end) && (*s_nxt)->optional())
{
// lookahead object not found and is optional. try the next
++s_nxt;
}
else
{
// no restriction
break;
}
}
}
// set value and advance to next parse object
(*s_cur)->setFromRange(curR.first,curR.second);
s_cur = s_nxt;
if (s_nxt != m_parseStack.rend())
{
++s_nxt;
}
data_start = curR.second;
}
if (data_start != data_end)
{
throw runtime_error("Data extends beyond pattern (" + describeRemainingData(data_start,data_end).hideAsString() + ")");
}
m_tokens.clear();
for (parseStack_t::const_iterator i = m_parseStack.begin(); i != m_parseStack.end(); ++i)
{
(*i)->reportValue(m_tokens);
}
}
};
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
filenameMetadata::filenameMetadata(): m_impl(0)
{
m_impl = new filenameMetadata::impl;
}
filenameMetadata::~filenameMetadata() throw()
{
forget(m_impl);
}
void filenameMetadata::setPattern(const utf8 &pattern) throw(exception)
{
assert(m_impl);
if (!m_impl) throw logic_error(string(__FUNCTION__) + " internal impl object is null");
m_impl->setPattern(pattern);
}
void filenameMetadata::parse(const utf8 &data) throw(exception)
{
assert(m_impl);
if (!m_impl) throw logic_error(string(__FUNCTION__) + " internal impl object is null");
m_impl->parse(data);
}
void filenameMetadata::deleteToken(const utf8 &token) throw(exception)
{
assert(m_impl);
if (!m_impl) throw logic_error(string(__FUNCTION__) + " internal impl object is null");
m_impl->deleteToken(token);
}
const size_t filenameMetadata::countTokens() throw(exception)
{
assert(m_impl);
if (!m_impl) throw logic_error(string(__FUNCTION__) + " internal impl object is null");
return m_impl->countTokens();
}
utf8& filenameMetadata::operator[](const utf8 &key) throw(exception)
{
assert(m_impl);
if (!m_impl) throw logic_error(string(__FUNCTION__) + " internal impl object is null");
return m_impl->operator[](key);
}
const map<utf8,utf8>& filenameMetadata::getTokens() const throw(exception)
{
assert(m_impl);
if (!m_impl) throw logic_error(string(__FUNCTION__) + " internal impl object is null");
return m_impl->getTokens();
}