winamp/Src/Plugins/DSP/dsp_sps/dxi/ParamEnvelope.cpp
2024-09-24 14:54:57 +02:00

403 lines
12 KiB
C++

// ParamEnvelope.cpp: implementation of the CParamEnvelope class.
//
//////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "AudioPlugIn.h"
#include "ParamEnvelope.h"
#include <math.h>
////////////////////////////////////////////////////////////////////////////////
// ParamInfo
////////////////////////////////////////////////////////////////////////////////
float ParamInfo::MapToInternal( float fValue ) const
{
// Convert a user-supplied parameter value to one that is for internal
// use by the plug-in's processing code.
if (MPT_FLOAT == mppi.mpType)
{
// Map floats to the internal range, using a linear mapping
double dDelta = (fValue - mppi.mpdMinValue) / (mppi.mpdMaxValue - mppi.mpdMinValue);
return float( fInternalMin + dDelta * (fInternalMax - fInternalMin) );
}
else if (MPT_BOOL == mppi.mpType)
{
// Map booleans to 0.0 or 1.0
return float( (fValue < 0.5) ? MPBOOL_FALSE : MPBOOL_TRUE );
}
else // (MPT_ENUM == mppi.mpType || MPT_INT == mppi.mpType)
{
// Map integers to the internal range, using a linear mapping, and then
// round to the nearest value.
double dDelta = (fValue - mppi.mpdMinValue) / (mppi.mpdMaxValue - mppi.mpdMinValue);
double dMapped = fInternalMin + dDelta * (fInternalMax - fInternalMin);
return static_cast<float>( floor( dMapped + 0.5 ) );
}
}
////////////////////////////////////////////////////////////////////////////////
float ParamInfo::MapToExternal( float fValue ) const
{
// Convert an internal processing value to value in the user's input range
if (MPT_FLOAT == mppi.mpType)
{
// Map floats to the external range, using a linear mapping
double dDelta = (fValue - fInternalMin) / (fInternalMax - fInternalMin);
return float( mppi.mpdMinValue + dDelta * (mppi.mpdMaxValue - mppi.mpdMinValue) );
}
else if (MPT_BOOL == mppi.mpType)
{
// Booleans are already in a suitable range; no mapping required.
return fValue;
}
else // (MPT_ENUM == mppi.mpType || MPT_INT == mppi.mpType)
{
// Map integers to the external range, using a linear mapping
double dDelta = (fValue - fInternalMin) / (fInternalMax - fInternalMin);
return float( mppi.mpdMinValue + dDelta * (mppi.mpdMaxValue - mppi.mpdMinValue) );
}
}
////////////////////////////////////////////////////////////////////////////////
// CParamEnvelope
////////////////////////////////////////////////////////////////////////////////
//------------------------------------------------------------------------------
// Ctors
CParamEnvelope::CParamEnvelope() :
m_bOverride( FALSE ),
m_bCaptured( FALSE ),
m_fOverrideValue( 0 ),
m_fEnvelopeValue( 0 ),
m_dEnvelopeDelta1( 0 ),
m_dEnvelopeDelta2( 0 ),
m_bValidDeltas( TRUE ),
m_rtRendered( 0 )
{
}
CParamEnvelope::~CParamEnvelope()
{
}
//----------------------------------------------------------------------------
// Phase 2 of construction
void CParamEnvelope::SetParamInfo( const ParamInfo& info )
{
m_info = info;
m_fEnvelopeValue = m_info.MapToInternal( m_info.mppi.mpdNeutralValue );
cleanup();
}
//----------------------------------------------------------------------------
// Find the index for data on or after rt
int CParamEnvelope::IndexForRefTime( REFERENCE_TIME rt ) const
{
CAutoLock lock( const_cast<CParamEnvelope*>( this ) );
int const nLength = GetCount();
// Fail gracefully if the list is empty
if (0 == nLength)
return -1;
// Special case for position after the last segment
if (rt >= m_envSegs[ nLength - 1 ].rtEnd)
return nLength - 1;
int ixMin = 0;
int ixMax = nLength;
int ix = ( ixMin + ixMax ) / 2;
// Binary search for the shape which starts on or before the given time
do
{
REFERENCE_TIME rtShape = m_envSegs[ ix ].rtStart;
// We've made an exact match
if (rtShape == rt)
return ix;
// No match was found, so update search indices
else if (rt < rtShape)
ixMax = ix;
else if (rt > rtShape)
ixMin = ix;
ix = (ixMin + ixMax) / 2;
}
while (ix != ixMin);
// The search may have left us at a shape after the desired time, so
// scan back if necessary
while (ix >= 0 && m_envSegs[ ix ].rtStart > rt)
--ix;
return ix;
}
//------------------------------------------------------------------------------
// Set the current position, updating current envelope value and deltas. This
// method is called repeatedly by the streaming code, to update parameter values
// as they evolve along the duration of the envelope.
HRESULT CParamEnvelope::UpdateValuesForRefTime( REFERENCE_TIME rt, long lSampleRate )
{
CAutoLock lock( this );
int const nLength = GetCount();
if (0 == nLength)
return S_OK; // nothing to do
int const ix = IndexForRefTime( rt );
const MP_ENVELOPE_SEGMENT* pmpseg = (ix < 0 || ix >= nLength) ? NULL : &m_envSegs[ ix ];
// Assume deltas are valid. We'll make them invalid if we encounter a SIN curve.
m_bValidDeltas = TRUE;
if (NULL == pmpseg || rt < pmpseg->rtStart || rt > pmpseg->rtEnd)
{
// The seek position is between 2 segments, so do not modify the current envelope
// value. The envelope will either latch the previous value, or continue to obey
// any intervening override value, until we hit the next segment boundary.
if (NULL != pmpseg)
m_fEnvelopeValue = m_info.MapToInternal( pmpseg->valEnd );
m_dEnvelopeDelta1 = m_dEnvelopeDelta2 = 0;
}
else
{
// We're dealing with point directly over a shape. Stop any override value.
stopOverride();
// Compute the time delta between this vector and the next, as value
// between 0..1. We use to interpolate between points.
double dx = double(pmpseg->rtEnd - pmpseg->rtStart) / UNITS;
double y0 = m_info.MapToInternal( pmpseg->valStart );
double y1 = m_info.MapToInternal( pmpseg->valEnd );
double dy = y1 - y0;
double x = (double(rt - pmpseg->rtStart) / UNITS) / dx;
// Convert dx to units per sample, before computing deltas
dx = dx * lSampleRate;
// Interpolate between times
if (MP_CURVE_JUMP == pmpseg->iCurve)
{
m_dEnvelopeDelta2 = 0;
m_dEnvelopeDelta1 = 0;
m_fEnvelopeValue = static_cast<float>( y0 );
}
else if (MP_CURVE_LINEAR == pmpseg->iCurve)
{
m_dEnvelopeDelta2 = 0;
m_dEnvelopeDelta1 = dy / dx;
m_fEnvelopeValue = static_cast<float>( y0 + dy * x );
}
else if (MP_CURVE_SQUARE == pmpseg->iCurve || MP_CURVE_INVSQUARE == pmpseg->iCurve)
{
double A;
double B;
if (MP_CURVE_SQUARE == pmpseg->iCurve)
{
A = y0;
B = dy;
}
else
{
x = x - 1;
A = y1;
B = -dy;
}
m_dEnvelopeDelta2 = 2.0 * B / (dx * dx);
m_dEnvelopeDelta1 = (B / dx) * (2.0 * x + (1.0 / dx));
m_fEnvelopeValue = static_cast<float>( A + B * x * x );
}
else if (MP_CURVE_SINE)
{
static const double dPI = 3.14159265358979323846264338327950288419716939937510;
double dTheta = dPI * (x - 0.5);
m_bValidDeltas = FALSE;
m_fEnvelopeValue = float( dy * ( sin( dTheta ) + 0.5 ) );
}
}
// Keep track of the latest time rendered so far
m_rtRendered = max( m_rtRendered, rt );
return S_OK;
}
//------------------------------------------------------------------------------
// If the list is empty, make sure we get an override value.
void CParamEnvelope::cleanup()
{
if (0 == GetCount() && !IsOverrideActive())
{
m_fOverrideValue = m_fEnvelopeValue;
m_bOverride = TRUE;
}
}
//---------------------------------------------------------------------------
// Set the value of our parameter, overriding any segment in effect.
HRESULT CParamEnvelope::SetParam( float fValue )
{
m_bOverride = TRUE;
m_fOverrideValue = m_info.MapToInternal( fValue );
m_fEnvelopeValue = m_fOverrideValue;
m_dEnvelopeDelta1 = m_dEnvelopeDelta2 = 0;
return S_OK;
}
//------------------------------------------------------------------------------
// Get the value of the parameter, either overriden on an a segment
HRESULT CParamEnvelope::GetParam( float* pfValue )
{
if (NULL == pfValue)
return E_POINTER;
*pfValue = m_info.MapToExternal( GetCurrentValue() );
return S_OK;
}
//------------------------------------------------------------------------------
// Add segments to this envelope
static bool compareEnvSeg( const MP_ENVELOPE_SEGMENT& a, const MP_ENVELOPE_SEGMENT& b )
{
return a.rtStart < b.rtStart;
}
static bool operator==( const MP_ENVELOPE_SEGMENT& a, const MP_ENVELOPE_SEGMENT& b )
{
return 0 == memicmp( &a, &b, sizeof(MP_ENVELOPE_SEGMENT) );
}
HRESULT CParamEnvelope::AddEnvelope( DWORD cSegments, MP_ENVELOPE_SEGMENT* pmpes, double dSamplesPerRefTime )
{
CAutoLock lock( this );
// Make room for what we are going to add
m_envSegs.reserve( m_envSegs.size() + cSegments );
// Add each segment, noting which one is earliest in time
REFERENCE_TIME rtMin = _I64_MAX;
for (int ix = 0; ix < cSegments; ix++)
{
// Round reference times to sample boundaries
MP_ENVELOPE_SEGMENT mpes = pmpes[ ix ];
mpes.rtStart = REFERENCE_TIME(mpes.rtStart * dSamplesPerRefTime) / dSamplesPerRefTime + 0.5;
mpes.rtEnd = REFERENCE_TIME(mpes.rtEnd * dSamplesPerRefTime) / dSamplesPerRefTime + 0.5;
m_envSegs.push_back( pmpes[ ix ] );
if (mpes.rtStart < rtMin)
rtMin = mpes.rtStart;
}
// Flush all segments prior to the first newly added one
ix = IndexForRefTime( rtMin );
if (ix > 0 && rtMin < m_rtRendered)
m_envSegs.erase( m_envSegs.begin(), m_envSegs.begin() + ix );
// Sort them
std::sort( m_envSegs.begin(), m_envSegs.end(), compareEnvSeg );
// Remove duplicates
EnvelopeSegs::iterator it = m_envSegs.begin();
while (it != m_envSegs.end())
{
EnvelopeSegs::iterator itBegin = it + 1;
EnvelopeSegs::iterator itEnd = itBegin;
while (itEnd != m_envSegs.end() && *itEnd == *it)
itEnd++;
if (itEnd != itBegin)
it = m_envSegs.erase( itBegin, itEnd );
else
it++;
}
return S_OK;
}
//------------------------------------------------------------------------------
// Flush segments within the specified time range. The rules for flushing are
// described as follows in the documentation for IMediaParams:
//
// If the time span specified by refTimeStart and refTimeEnd overlaps an envelope
// segment, the entire segment is flushed. On the other hand, if it falls on
// the boundary of an envelope segment, the entire segment is retained. Thus:
//
// [] If the start time falls inside an envelope segment, the segment is flushed.
// [] If the end time falls inside an envelope segment, the segment is flushed.
// [] If the start time equals the end time of an envelope segment, the segment is retained.
// [] If the end time equals the start time of an envelope segment, the segment is retained.
HRESULT CParamEnvelope::FlushEnvelope( REFERENCE_TIME rtStart, REFERENCE_TIME rtEnd, double dSamplesPerRefTime )
{
CAutoLock lock( this );
// Round reference times to sample boundaries
if (rtStart != _I64_MIN && rtStart != _I64_MAX)
rtStart = REFERENCE_TIME( REFERENCE_TIME(rtStart / dSamplesPerRefTime) * dSamplesPerRefTime + 0.5 );
if (rtEnd != _I64_MIN && rtEnd != _I64_MAX)
rtEnd = REFERENCE_TIME( REFERENCE_TIME(rtEnd / dSamplesPerRefTime) * dSamplesPerRefTime + 0.5 );
EnvelopeSegs::iterator it = m_envSegs.begin();
while (it != m_envSegs.end())
{
if (!(rtStart >= it->rtEnd || rtEnd <= it->rtStart))
it = m_envSegs.erase( it );
else
it++;
}
// Once envelopes get thrown away, we need to redetermine our max render time
m_rtRendered = 0;
cleanup();
return S_OK;
}
//------------------------------------------------------------------------------
// The parameter pcSegments passes values both ways. The caller needs to pass in the
// size of the segment array. GetEnvelope() then uses pcSegments to return the number
// of segments it has placed in the array.
HRESULT CParamEnvelope::GetEnvelope( DWORD *pcSegments, MP_ENVELOPE_SEGMENT *pmpes )
{
CAutoLock lock( this );
ASSERT( pcSegments );
DWORD ix = 0;
for (EnvelopeSegs::iterator it = m_envSegs.begin();
it != m_envSegs.end() && ix < *pcSegments;
it++, ix++)
{
pmpes[ ix ] = *it;
}
*pcSegments = ix;
return S_OK;
}