winamp/Src/vlb/channel.cpp
2024-09-24 14:54:57 +02:00

843 lines
No EOL
25 KiB
C++

/* $Header: /cvs/root/winamp/vlb/channel.cpp,v 1.1 2009/04/28 20:21:08 audiodsp Exp $ */
/***************************************************************************\
*
* Copyright 2000-2002 Dolby Laboratories, Inc. All Rights
* Reserved. Do not copy. Do not distribute.
* Confidential information.
*
* (C) copyright Fraunhofer - IIS (1998)
* All Rights Reserved
*
* filename: channel.cpp
* project : MPEG-2 AAC Decoder
* contents/description: independent channel stream object
*
\***************************************************************************/
#include <new.h> // displacement new
#include "channel.h"
#include "bitstream.h"
#include "bitsequence.h"
// // // Base class for CSingleChannel, CChannelPair
CChannelElement::CChannelElement (CDolbyBitStream &bs)
: m_bs (bs),
m_GlobalGain (8)
{
m_WantEqualizer = false ;
m_WantSpectralData = false ;
}
CChannelElement::~CChannelElement ()
{}
CBlock *CChannelElement::ReadICS (CChannelInfo &ics_info, unsigned long *memory)
{
// allocates and reads one individual_channel_stream
m_GlobalGain.Read (m_bs) ;
if (!ics_info.IsValid ())
{
ics_info.Read (m_bs) ;
}
CBlock *block ;
if (ics_info.IsLongBlock ())
{
block = new (static_cast<void *>(memory)) CLongBlock (ics_info) ;
}
else
{
block = new (static_cast<void *>(memory)) CShortBlock (ics_info) ;
}
block->Read (m_bs, m_GlobalGain) ;
// 'block' points to the same location as 'memory', but keeping the
// m_Block pointers as class members saves us a lot of typecasting
return block ;
}
void CChannelElement::SetEqualization (bool wantEQ, float Mask [])
{
m_WantEqualizer = wantEQ ;
if (wantEQ)
{
for (int i = 0 ; i < CBlock::EqualizationMaskLength ; i++)
{
m_EqualizerMask [i] = Mask [i] ;
}
}
}
// // // CSingleChannel wraps single_channel_element()
CSingleChannel::CSingleChannel (CDolbyBitStream &theBitstream)
: CChannelElement (theBitstream)
{
#ifdef MAIN_PROFILE
m_Prediction.FullReset () ;
#endif
poIMDCTObject=new IMDCTObject(4096,256);
poNormalIMDCTObject=new IMDCTObject(2048,128);
ppfData=new float*[1];
ppshData=new short*[1];
m_poAudioDSP = new AudioIODSP(1);
}
CSingleChannel::~CSingleChannel ()
{
delete poIMDCTObject;
delete poNormalIMDCTObject;
delete[] ppfData;
delete[] ppshData;
delete m_poAudioDSP;
}
void CSingleChannel::Read (const CStreamInfo &si)
{
m_IcsInfo.Reset (si) ;
m_Block = ReadICS (m_IcsInfo, m_BlockMemory) ;
}
void CSingleChannel::Decode (AudioIOControl *poAudioIO, CStreamInfo &info, int stride /* = 1 */)
{
if (m_IcsInfo.IsMainProfile ())
{
#ifdef MAIN_PROFILE
m_Prediction.Apply (m_IcsInfo, *m_Block) ;
#else
throw EIllegalProfile();
#endif
}
m_Block->ApplyTools () ;
if (m_WantEqualizer)
{
m_Block->ApplyEqualizationMask (m_EqualizerMask) ;
}
m_Block->FrequencyToTime_Fast (m_Previous) ;
ppfData[0]=m_Block->AccessOutput();
// ApplyLimiter is called to minimize distortion from clipping. The limiter can only
// be applied to 128 samples at a time so there must be several calls to limit all 1024
// samples in a block. This is due to the way the buffer allocation is done in the
// constructor of the AudioIODSP class.
int iLength = 1024;
int grpIndex = 0;
short sThisLength = (iLength < DLYBUFSZ) ? iLength : DLYBUFSZ;
m_poAudioDSP->SetSamplingRate(info.GetSamplingRate());
for (int sSamp = 0; sSamp < iLength; sSamp += sThisLength)
{
m_poAudioDSP->ApplyLimiter(ppfData, sThisLength, grpIndex);
sThisLength = ((iLength - sThisLength * grpIndex++) < DLYBUFSZ) ?
(iLength - sThisLength * grpIndex++) : DLYBUFSZ;
}
poAudioIO->IO(ppfData,1024);
m_Block->~CBlock () ;
}
void CSingleChannel::DecodeDolby ( AudioIOControl *poAudioIO,
DOLBY_PAYLOAD_STRUCT *psDSEInfo,
CStreamInfo &info,
int stride /* = 1 */)
{
int iWindowType;
int iWindowShape;
int i,j,grp_index,win_in_grp_index;
int startingBinForThisWindow, startingBaseBandBin, halfWindowLength;
int overall_window_number1, overall_window_number2;
int firstWinThisGrp;
float avgCopyEnergies[8][SE_MAX_NUM_BANDS];
int iBandCounter;
// previous window sequence
// need to keep this variable around to handle legacy code which forces
// spectral extend to rely on a special case for WindowSequence == 3
static int previousWindowSequence = 0;
// get pointer to spectral data
// these calls really need to depend on the blocktype -
// short blocks require the window number (0-7) to be passed
// to AccessSpectralData(); long blocks do not require this argument.
ppfData[0]=m_Block->AccessSpectralData();
// Apply DNS here.
// Only apply DNS if we have valid DNS information read from the SE bitstream.
// If there was a SE bitstream reading error of *any* kind, do not apply DNS.
if (psDSEInfo->iDolbyBitStreamWarning == 0)
{
// applyDNS() applies to all window groups at the same time, so there is
// no need to call applyDNS() for each window group individually.
applyDNS(ppfData[0],&psDSEInfo->asDNSInfoStruct[0],previousWindowSequence);
}
#ifdef MAIN_PROFILE
if (m_IcsInfo.IsMainProfile ())
{
m_Prediction.Apply (m_IcsInfo, *m_Block) ;
}
#endif
iWindowType=m_IcsInfo.GetWindowSequence();
iWindowShape=m_IcsInfo.GetWindowShape();
//Do TNS:
m_Block->ApplyTools () ;
// Spectral Extension.
// for each window group...
overall_window_number1 = 0;
overall_window_number2 = 0;
for(grp_index=0;grp_index<psDSEInfo->iGroupCount[0];grp_index++)
{
firstWinThisGrp = overall_window_number1;
// for each window within the current window group...
for(win_in_grp_index=0;
win_in_grp_index<psDSEInfo->iGroupLength[0][grp_index];
win_in_grp_index++,overall_window_number1++)
{
// compute some parameters depedent on short/long blocktype, window group number, and transform length
if (psDSEInfo->asDNSInfoStruct[0].iWindowSequence == 2)
{
// SHORT BLOCKS
startingBinForThisWindow = overall_window_number1*256;
startingBaseBandBin = 12;
halfWindowLength = (psDSEInfo->iUsesDoubleLengthXForm) ? 256 : 128;
}
else
{
// LONG, STOP, START blocks
startingBinForThisWindow = 0;
#ifdef NEW_BUFFER_MODEL
startingBaseBandBin = 96;
#else
startingBaseBandBin = 100;
#endif
halfWindowLength = (psDSEInfo->iUsesDoubleLengthXForm) ? 2048 : 1024;
}
computeAvgCopyEnergies(&ppfData[0][startingBinForThisWindow],
startingBaseBandBin,
psDSEInfo->aiCopyStop[0],
psDSEInfo->num_se_bands[0],
psDSEInfo->seBands[0][grp_index],
halfWindowLength,
psDSEInfo->asDNSInfoStruct[0].iWindowSequence,
avgCopyEnergies[overall_window_number1]);
}/* win_in_grp_index */
/* compute average energies for each group before passing into spectral extend */
// accumulate energies for this group
for(win_in_grp_index=1;
win_in_grp_index<psDSEInfo->iGroupLength[0][grp_index];
win_in_grp_index++)
{
for(iBandCounter=0;iBandCounter<psDSEInfo->num_se_bands[0];iBandCounter++)
{
avgCopyEnergies[firstWinThisGrp][iBandCounter] += avgCopyEnergies[firstWinThisGrp + win_in_grp_index][iBandCounter];
}
}
// find the average energy for this group
for(iBandCounter=0;iBandCounter<psDSEInfo->num_se_bands[0];iBandCounter++)
{
avgCopyEnergies[firstWinThisGrp][iBandCounter] /= psDSEInfo->iGroupLength[0][grp_index];
}
// copy this average energy to all values in the avgCopyEnergies array which correspond to windows in the current group
for(win_in_grp_index=1;
win_in_grp_index<psDSEInfo->iGroupLength[0][grp_index];
win_in_grp_index++)
{
for(iBandCounter=0;iBandCounter<psDSEInfo->num_se_bands[0];iBandCounter++)
{
avgCopyEnergies[firstWinThisGrp + win_in_grp_index][iBandCounter] = avgCopyEnergies[firstWinThisGrp][iBandCounter];
}
}
// for each window within the current window group...
for (win_in_grp_index=0;
win_in_grp_index<psDSEInfo->iGroupLength[0][grp_index];
win_in_grp_index++,overall_window_number2++)
{
firstWinThisGrp = overall_window_number2;
// check to see if dolby bitstream was read correctly.
// If so, spectral extend all windows, whether we're dealing with a long block or short block
if (psDSEInfo->iDolbyBitStreamWarning == 0)
{
// compute some parameters dependent short/long blocktype, window group number, and transform length
if (psDSEInfo->asDNSInfoStruct[0].iWindowSequence == 2)
{
// SHORT blocks
// The constant 256 is ugly here - but is equal to (2 * CShortBlock::MaximumBins).
// This is the spacing of the mdct coefficients in the buffer ppfData[n], independent
// of whether we're using a single or double length transform.
startingBinForThisWindow = overall_window_number2*256;
startingBaseBandBin = 12;
halfWindowLength = (psDSEInfo->iUsesDoubleLengthXForm) ? 256 : 128;
}
else
{
// LONG, STOP, START blocks
startingBinForThisWindow = 0;
#ifdef NEW_BUFFER_MODEL
startingBaseBandBin = 96;
#else
startingBaseBandBin = 100;
#endif
halfWindowLength = (psDSEInfo->iUsesDoubleLengthXForm) ? 2048 : 1024;
}
spectralExtend(&ppfData[0][startingBinForThisWindow],
startingBaseBandBin,
psDSEInfo->aiCopyStop[0],
psDSEInfo->sfm[0][grp_index],
psDSEInfo->num_se_bands[0],
psDSEInfo->seBands[0][grp_index],
psDSEInfo->delta_power_values[0][grp_index],
psDSEInfo->fdamp[0][grp_index],
halfWindowLength,
psDSEInfo->asDNSInfoStruct[0].iWindowSequence,
psDSEInfo->iSEPowerResolution,
previousWindowSequence,
avgCopyEnergies[overall_window_number2]);
}
else
{
// zero out the extension band of each window if there was a bitstream error.
// be careful here- we may be dealing with many short blocks or a single long block
if (psDSEInfo->asDNSInfoStruct[0].iWindowSequence == 2)
{
// SHORT blocks
for(i=0;i<8;i++) {
for(j=psDSEInfo->aiCopyStop[0]; j<256; j++)
{
ppfData[0][i*256+j]=0.0f;
}
}
}
else
{
// LONG, STOP, START blocks
for (i = psDSEInfo->aiCopyStop[0]; i<2048; i++)
{
ppfData[0][i] = 0.0f;
}
}
} // if psDSEInfo->iDolbyBitStreamWarning...
} // for win_in_grp_index
} // for grp_index
/* Double all TCs if using a double length x-form so we do not lose 6dB
* after the imdct.
*/
if (psDSEInfo->iUsesDoubleLengthXForm)
{
for (i = 0; i < 2048; i++)
{
ppfData[0][i] *= 2.0f;
}
}
// do the transform
if (psDSEInfo->iUsesDoubleLengthXForm)
{
poIMDCTObject->Transform(ppfData[0],iWindowType,iWindowShape);
// The limiter can only be applied to 128 samples at a time
// so there must be several calls to limit all 2048 samples
// in a block. This is due to the way the buffer allocation
// is done in the constructor of the AudioIODSP class
int iLength = 2048;
int grpIndex = 0;
int sThisLength = (iLength < DLYBUFSZ) ? iLength : DLYBUFSZ;
m_poAudioDSP->SetSamplingRate(info.GetSamplingRate());
for (int sSamp = 0; sSamp < iLength; sSamp += sThisLength)
{
// Limiter is applied to ppfData
m_poAudioDSP->ApplyLimiter(ppfData, sThisLength, grpIndex);
sThisLength = ((iLength - sThisLength * grpIndex++) < DLYBUFSZ) ?
(iLength - sThisLength * grpIndex++) : DLYBUFSZ;
}
poAudioIO->IO(ppfData,2048);
}
else
{
poNormalIMDCTObject->Transform(ppfData[0],iWindowType,iWindowShape);
// Apply Limiter so that distortion from clipping is minimized
// The limiter can only be applied to 128 samples at a time
// so there must be several calls to limit all 2048 samples
// in a block. This is due to the way the buffer allocation
// is done in the constructor of the AudioIODSP class
int iLength = 1024;
int grpIndex = 0;
short sThisLength = (iLength < DLYBUFSZ) ? iLength : DLYBUFSZ;
m_poAudioDSP->SetSamplingRate(info.GetSamplingRate());
for (int sSamp = 0; sSamp < iLength; sSamp += sThisLength)
{
// Limiter is applied to ppfData
m_poAudioDSP->ApplyLimiter(ppfData, sThisLength, grpIndex);
sThisLength = ((iLength - sThisLength * grpIndex++) < DLYBUFSZ) ?
(iLength - sThisLength * grpIndex++) : DLYBUFSZ;
}
poAudioIO->IO(ppfData,1024);
}
// update previousWindowSequence
previousWindowSequence = psDSEInfo->asDNSInfoStruct[0].iWindowSequence;
m_Block->~CBlock () ;
}
// // // CChannelPair wraps channel_pair_element()
CChannelPair::CChannelPair (CDolbyBitStream &theBitstream)
: CChannelElement (theBitstream),
m_CommonWindow (1)
{
#ifdef MAIN_PROFILE
m_Prediction [L].FullReset () ;
m_Prediction [R].FullReset () ;
#endif
ppoIMDCTObject = new IMDCTObject* [2];
ppoNormalIMDCTObject = new IMDCTObject* [2];
for (int n = 0; n < 2; n++)
{
ppoIMDCTObject[n] = new IMDCTObject(4096,256);
ppoNormalIMDCTObject[n] = new IMDCTObject(2048,128);
}
ppfData = new float*[2];
ppshData = new short*[2];
m_poAudioDSP = new AudioIODSP(2);
}
CChannelPair::~CChannelPair ()
{
for (int n = 0; n < 2; n++)
{
delete ppoIMDCTObject[n];
delete ppoNormalIMDCTObject[n];
}
delete[] ppoIMDCTObject;
delete[] ppoNormalIMDCTObject;
delete[] ppfData;
delete[] ppshData;
delete m_poAudioDSP;
}
void CChannelPair::Read (const CStreamInfo &si)
{
m_IcsInfo [L].Reset (si) ;
m_IcsInfo [R].Reset (si) ;
if (m_CommonWindow.Read (m_bs))
{
m_IcsInfo [L].Read (m_bs) ;
m_IcsInfo [R] = m_IcsInfo [L] ;
m_JointStereo.Read (m_IcsInfo [L], m_bs) ;
}
m_Block [L] = ReadICS (m_IcsInfo [L], m_BlockMemory [L]) ;
m_bs.SetPositionMarker (CDolbyBitStream::SecondIndividualChannelStart) ;
m_Block [R] = ReadICS (m_IcsInfo [R], m_BlockMemory [R]) ;
}
void CChannelPair::Decode (AudioIOControl *poAudioIO, CStreamInfo &info, int stride /* = 1 */)
{
#ifdef MAIN_PROFILE
// - apply prediction tool to left (coded) channel
// - calculate right channel from intensity position
// - apply prediction tool to right channel
// unfortunately this breaks m_JointStereo::Apply() into two steps
#endif
if (m_CommonWindow)
{
m_JointStereo.ApplyMS (m_IcsInfo [L], *m_Block [L], *m_Block [R]) ;
}
#ifdef MAIN_PROFILE
if (m_IcsInfo [L].IsMainProfile ())
{
m_Prediction [L].Apply (m_IcsInfo [L], *m_Block [L]) ;
}
#endif
if (m_CommonWindow)
{
m_JointStereo.ApplyIS (m_IcsInfo [L], *m_Block [L], *m_Block [R]) ;
}
#ifdef MAIN_PROFILE
if (m_IcsInfo [R].IsMainProfile ())
{
m_Prediction [R].Apply (m_IcsInfo [R], *m_Block [R]) ;
}
#endif
for (int channel = 0 ; channel < Channels ; channel++)
{
m_Block [channel]->ApplyTools () ;
if (m_WantEqualizer)
{
m_Block [channel]->ApplyEqualizationMask (m_EqualizerMask) ;
}
m_Block [channel]->FrequencyToTime_Fast (m_Previous [channel]) ;
ppfData[channel]=m_Block[channel]->AccessOutput();
}
// ApplyLimiter is called to minimize distortion from clipping. The limiter can only
// be applied to 128 samples at a time so there must be several calls to limit all
// samples in a block. This is due to the way the buffer allocation is done in the
// constructor of the AudioIODSP class.0
int iLength = 1024;
int grpIndex = 0;
int sThisLength = (iLength < DLYBUFSZ) ? iLength : DLYBUFSZ;
m_poAudioDSP->SetSamplingRate(info.GetSamplingRate());
for (int sSamp = 0; sSamp < iLength; sSamp += sThisLength)
{
m_poAudioDSP->ApplyLimiter(ppfData, sThisLength, grpIndex);
sThisLength = ((iLength - sThisLength * grpIndex++) < DLYBUFSZ) ?
(iLength - sThisLength * grpIndex++) : DLYBUFSZ;
}
poAudioIO->IO(ppfData,1024);
m_Block [L]->~CBlock () ;
m_Block [R]->~CBlock () ;
}
void CChannelPair::DecodeDolby (AudioIOControl *poAudioIO,
DOLBY_PAYLOAD_STRUCT *psDSEInfo,
CStreamInfo &info,
int stride /* = 1 */)
{
int channel, win_in_grp_index;
int iWindowType;
int iWindowShape;
int i,j,grp_index;
int startingBinForThisWindow;
int startingBaseBandBin;
int halfWindowLength;
int overall_window_number1, overall_window_number2;
float avgCopyEnergies[8][SE_MAX_NUM_BANDS];
int iBandCounter;
int firstWinThisGrp;
// need to keep this variable around to handle legacy code which forces
// spectral extend to rely on a special case for WindowSequence == 3
static int previousWindowSequence[2] = {0,0};
// apply DNS to each channel
// these calls really need to depend on the blocktype -
// short blocks require the window number (0-7) to be passed
// to AccessSpectralData(); long blocks do not require this argument.
ppfData[L]=m_Block[L]->AccessSpectralData();
ppfData[R]=m_Block[R]->AccessSpectralData();
// Apply DNS here
// Only apply DNS if we have valid DNS information read from the SE bitstream.
// If there was a SE bitstream reading error of *any* kind, do not apply DNS
if (psDSEInfo->iDolbyBitStreamWarning == 0)
{
// applyDNS() applies to all window groups at the same time, so there is
// no need to call applyDNS() for each window group individually.
applyDNS(ppfData[L],&psDSEInfo->asDNSInfoStruct[L],previousWindowSequence[L]);
applyDNS(ppfData[R],&psDSEInfo->asDNSInfoStruct[R],previousWindowSequence[R]);
}
#ifdef MAIN_PROFILE
// - apply prediction tool to left (coded) channel
// - calculate right channel from intensity position
// - apply prediction tool to right channel
// unfortunately this breaks m_JointStereo::Apply() into two steps
#endif
if (m_CommonWindow)
{
m_JointStereo.ApplyMS (m_IcsInfo [L], *m_Block [L], *m_Block [R]) ;
}
#ifdef MAIN_PROFILE
if (m_IcsInfo [L].IsMainProfile ())
{
m_Prediction [L].Apply (m_IcsInfo [L], *m_Block [L]) ;
}
#endif
if (m_CommonWindow)
{
m_JointStereo.ApplyIS (m_IcsInfo [L], *m_Block [L], *m_Block [R]) ;
}
#ifdef MAIN_PROFILE
if (m_IcsInfo [R].IsMainProfile ())
{
m_Prediction [R].Apply (m_IcsInfo [R], *m_Block [R]) ;
}
#endif
for (channel = 0 ; channel < Channels ; channel++)
{
iWindowType=m_IcsInfo[channel].GetWindowSequence();
iWindowShape=m_IcsInfo[channel].GetWindowShape();
ppfData[channel]=m_Block[channel]->AccessSpectralData();
// Apply TNS
m_Block [channel]->ApplyTools () ;
// Spectral Extension for Stereo Goes Here!
// for each window group...
overall_window_number1 = 0;
overall_window_number2 = 0;
for (grp_index=0;grp_index<psDSEInfo->iGroupCount[channel];grp_index++)
{
firstWinThisGrp = overall_window_number1;
// another window_in_group loop: compute average energy in this group for all bands in the current group
for (win_in_grp_index=0;
win_in_grp_index<psDSEInfo->iGroupLength[channel][grp_index];
win_in_grp_index++,overall_window_number1++)
{
// compute some parameters dependent short/long blocktype, window group number, and transform length
if (psDSEInfo->asDNSInfoStruct[channel].iWindowSequence == 2)
{
// SHORT blocks
// The constant 256 is ugly here - but is equal to (2 * CShortBlock::MaximumBins).
// This is the spacing of the mdct coefficients in the buffer ppfData[n], independent
// of whether we're using a single or double length transform.
startingBinForThisWindow = overall_window_number1*256;
startingBaseBandBin = 12;
halfWindowLength = (psDSEInfo->iUsesDoubleLengthXForm) ? 256 : 128;
}
else
{
// LONG, STOP, START blocks
startingBinForThisWindow = 0;
#ifdef NEW_BUFFER_MODEL
startingBaseBandBin = 96;
#else
startingBaseBandBin = 100;
#endif
halfWindowLength = (psDSEInfo->iUsesDoubleLengthXForm) ? 2048 : 1024;
}
computeAvgCopyEnergies(&ppfData[channel][startingBinForThisWindow],
startingBaseBandBin,
psDSEInfo->aiCopyStop[channel],
psDSEInfo->num_se_bands[channel],
psDSEInfo->seBands[channel][grp_index],
halfWindowLength,
psDSEInfo->asDNSInfoStruct[channel].iWindowSequence,
avgCopyEnergies[overall_window_number1]);
} /* win_in_grp_index */
/* compute average energies for each group before passing into spectral extend */
// accumulate energies for this group
for(win_in_grp_index=1;
win_in_grp_index<psDSEInfo->iGroupLength[channel][grp_index];
win_in_grp_index++)
{
for(iBandCounter=0;iBandCounter<psDSEInfo->num_se_bands[channel];iBandCounter++)
{
avgCopyEnergies[firstWinThisGrp][iBandCounter] += avgCopyEnergies[firstWinThisGrp + win_in_grp_index][iBandCounter];
}
}
// find the average energy for this group
for(iBandCounter=0;iBandCounter<psDSEInfo->num_se_bands[channel];iBandCounter++)
{
avgCopyEnergies[firstWinThisGrp][iBandCounter] /= psDSEInfo->iGroupLength[channel][grp_index];
}
// copy this average energy to all values in the avgCopyEnergies array which correspond to windows in the current group
for(win_in_grp_index=1;
win_in_grp_index<psDSEInfo->iGroupLength[channel][grp_index];
win_in_grp_index++)
{
for(iBandCounter=0;iBandCounter<psDSEInfo->num_se_bands[channel];iBandCounter++)
{
avgCopyEnergies[firstWinThisGrp + win_in_grp_index][iBandCounter] = avgCopyEnergies[firstWinThisGrp][iBandCounter];
}
}
// for each window within the current window group...
for (win_in_grp_index=0;
win_in_grp_index<psDSEInfo->iGroupLength[channel][grp_index];
win_in_grp_index++,overall_window_number2++)
{
firstWinThisGrp = overall_window_number2;
// check to see if dolby bitstream was read correctly.
// If so, spectral extend all windows, whether we're dealing with a long block or short block
if (psDSEInfo->iDolbyBitStreamWarning == 0)
{
// compute some parameters dependent short/long blocktype, window group number, and transform length
if (psDSEInfo->asDNSInfoStruct[channel].iWindowSequence == 2)
{
// SHORT blocks
// The constant 256 is ugly here - but is equal to (2 * CShortBlock::MaximumBins).
// This is the spacing of the mdct coefficients in the buffer ppfData[n], independent
// of whether we're using a single or double length transform.
startingBinForThisWindow = overall_window_number2*256;
startingBaseBandBin = 12;
halfWindowLength = (psDSEInfo->iUsesDoubleLengthXForm) ? 256 : 128;
}
else
{
// LONG, STOP, START blocks
startingBinForThisWindow = 0;
#ifdef NEW_BUFFER_MODEL
startingBaseBandBin = 96;
#else
startingBaseBandBin = 100;
#endif
halfWindowLength = (psDSEInfo->iUsesDoubleLengthXForm) ? 2048 : 1024;
}
spectralExtend (&ppfData[channel][startingBinForThisWindow],
startingBaseBandBin,
psDSEInfo->aiCopyStop[channel],
psDSEInfo->sfm[channel][grp_index],
psDSEInfo->num_se_bands[channel],
psDSEInfo->seBands[channel][grp_index],
psDSEInfo->delta_power_values[channel][grp_index],
psDSEInfo->fdamp[channel][grp_index],
halfWindowLength,
psDSEInfo->asDNSInfoStruct[channel].iWindowSequence,
psDSEInfo->iSEPowerResolution,
previousWindowSequence[channel],
avgCopyEnergies[overall_window_number2]);
}
else
{
// zero out the extension band of each window if there was a bitstream error.
// be careful here- we may be dealing with many short blocks or a single long block
if (psDSEInfo->asDNSInfoStruct[channel].iWindowSequence == 2)
{
// SHORT blocks
for(i=0;i<8;i++) {
for(j=psDSEInfo->aiCopyStop[channel]; j<256; j++)
{
ppfData[channel][i*256+j]=0.0f;
}
}
}
else
{
// LONG, STOP, START blocks
for (i = psDSEInfo->aiCopyStop[channel]; i<2048; i++)
{
ppfData[channel][i] = 0.0f;
}
}
} // if psDSEInfo->iDolbyBitStreamWarning...
} // for win_in_grp_index...
} // for grp_index...
/* Double all TCs if using a double length x-form so we do not lose 6dB
* after the imdct.
*/
if (psDSEInfo->iUsesDoubleLengthXForm)
{
for (i = 0; i < 2048; i++)
{
ppfData[channel][i] *= 2.0f;
}
}
// do the transform
if (psDSEInfo->iUsesDoubleLengthXForm)
{
ppoIMDCTObject[channel]->Transform(ppfData[channel],iWindowType,iWindowShape);
}
else
{
ppoNormalIMDCTObject[channel]->Transform(ppfData[channel],iWindowType,iWindowShape);
}
} // for channel
int iLength = (psDSEInfo->iUsesDoubleLengthXForm) ? 2048 : 1024;
int grpIndex = 0;
int sThisLength = (iLength < DLYBUFSZ) ? iLength : DLYBUFSZ;
m_poAudioDSP->SetSamplingRate(info.GetSamplingRate());
for (int sSamp = 0; sSamp < iLength; sSamp += sThisLength)
{
m_poAudioDSP->ApplyLimiter(ppfData, sThisLength, grpIndex);
sThisLength = ((iLength - sThisLength * grpIndex++) < DLYBUFSZ) ?
(iLength - sThisLength * grpIndex++) : DLYBUFSZ;
}
poAudioIO->IO(ppfData, iLength);
// update previousWindowSequence
previousWindowSequence[L] = psDSEInfo->asDNSInfoStruct[L].iWindowSequence;
previousWindowSequence[R] = psDSEInfo->asDNSInfoStruct[R].iWindowSequence;
m_Block [L]->~CBlock () ;
m_Block [R]->~CBlock () ;
}