winamp/Src/Plugins/Input/in_dshow/base/amvideo.cpp
2024-09-24 14:54:57 +02:00

275 lines
9.1 KiB
C++

//------------------------------------------------------------------------------
// File: AMVideo.cpp
//
// Desc: DirectShow base classes - implements helper functions for
// bitmap formats.
//
// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
//------------------------------------------------------------------------------
#include <streams.h>
#include <limits.h>
// These are bit field masks for true colour devices
const DWORD bits555[] = {0x007C00,0x0003E0,0x00001F};
const DWORD bits565[] = {0x00F800,0x0007E0,0x00001F};
const DWORD bits888[] = {0xFF0000,0x00FF00,0x0000FF};
// This maps bitmap subtypes into a bits per pixel value and also a
// name. unicode and ansi versions are stored because we have to
// return a pointer to a static string.
const struct {
const GUID *pSubtype;
WORD BitCount;
CHAR *pName;
WCHAR *wszName;
} BitCountMap[] = { &MEDIASUBTYPE_RGB1, 1, "RGB Monochrome", L"RGB Monochrome",
&MEDIASUBTYPE_RGB4, 4, "RGB VGA", L"RGB VGA",
&MEDIASUBTYPE_RGB8, 8, "RGB 8", L"RGB 8",
&MEDIASUBTYPE_RGB565, 16, "RGB 565 (16 bit)", L"RGB 565 (16 bit)",
&MEDIASUBTYPE_RGB555, 16, "RGB 555 (16 bit)", L"RGB 555 (16 bit)",
&MEDIASUBTYPE_RGB24, 24, "RGB 24", L"RGB 24",
&MEDIASUBTYPE_RGB32, 32, "RGB 32", L"RGB 32",
&MEDIASUBTYPE_ARGB32, 32, "ARGB 32", L"ARGB 32",
&MEDIASUBTYPE_Overlay, 0, "Overlay", L"Overlay",
&GUID_NULL, 0, "UNKNOWN", L"UNKNOWN"
};
// Return the size of the bitmap as defined by this header
STDAPI_(DWORD) GetBitmapSize(const BITMAPINFOHEADER *pHeader)
{
return DIBSIZE(*pHeader);
}
// This is called if the header has a 16 bit colour depth and needs to work
// out the detailed type from the bit fields (either RGB 565 or RGB 555)
STDAPI_(const GUID) GetTrueColorType(const BITMAPINFOHEADER *pbmiHeader)
{
BITMAPINFO *pbmInfo = (BITMAPINFO *) pbmiHeader;
ASSERT(pbmiHeader->biBitCount == 16);
// If its BI_RGB then it's RGB 555 by default
if (pbmiHeader->biCompression == BI_RGB) {
return MEDIASUBTYPE_RGB555;
}
// Compare the bit fields with RGB 555
DWORD *pMask = (DWORD *) pbmInfo->bmiColors;
if (pMask[0] == bits555[0]) {
if (pMask[1] == bits555[1]) {
if (pMask[2] == bits555[2]) {
return MEDIASUBTYPE_RGB555;
}
}
}
// Compare the bit fields with RGB 565
pMask = (DWORD *) pbmInfo->bmiColors;
if (pMask[0] == bits565[0]) {
if (pMask[1] == bits565[1]) {
if (pMask[2] == bits565[2]) {
return MEDIASUBTYPE_RGB565;
}
}
}
return GUID_NULL;
}
// Given a BITMAPINFOHEADER structure this returns the GUID sub type that is
// used to describe it in format negotiations. For example a video codec fills
// in the format block with a VIDEOINFO structure, it also fills in the major
// type with MEDIATYPE_VIDEO and the subtype with a GUID that matches the bit
// count, for example if it is an eight bit image then MEDIASUBTYPE_RGB8
STDAPI_(const GUID) GetBitmapSubtype(const BITMAPINFOHEADER *pbmiHeader)
{
ASSERT(pbmiHeader);
// If it's not RGB then create a GUID from the compression type
if (pbmiHeader->biCompression != BI_RGB) {
if (pbmiHeader->biCompression != BI_BITFIELDS) {
FOURCCMap FourCCMap(pbmiHeader->biCompression);
return (const GUID) FourCCMap;
}
}
// Map the RGB DIB bit depth to a image GUID
switch(pbmiHeader->biBitCount) {
case 1 : return MEDIASUBTYPE_RGB1;
case 4 : return MEDIASUBTYPE_RGB4;
case 8 : return MEDIASUBTYPE_RGB8;
case 16 : return GetTrueColorType(pbmiHeader);
case 24 : return MEDIASUBTYPE_RGB24;
case 32 : return MEDIASUBTYPE_RGB32;
}
return GUID_NULL;
}
// Given a video bitmap subtype we return the number of bits per pixel it uses
// We return a WORD bit count as thats what the BITMAPINFOHEADER uses. If the
// GUID subtype is not found in the table we return an invalid USHRT_MAX
STDAPI_(WORD) GetBitCount(const GUID *pSubtype)
{
ASSERT(pSubtype);
const GUID *pMediaSubtype;
INT iPosition = 0;
// Scan the mapping list seeing if the source GUID matches any known
// bitmap subtypes, the list is terminated by a GUID_NULL entry
while (TRUE) {
pMediaSubtype = BitCountMap[iPosition].pSubtype;
if (IsEqualGUID(*pMediaSubtype,GUID_NULL)) {
return USHRT_MAX;
}
if (IsEqualGUID(*pMediaSubtype,*pSubtype)) {
return BitCountMap[iPosition].BitCount;
}
iPosition++;
}
}
// Given a bitmap subtype we return a description name that can be used for
// debug purposes. In a retail build this function still returns the names
// If the subtype isn't found in the lookup table we return string UNKNOWN
int LocateSubtype(const GUID *pSubtype)
{
ASSERT(pSubtype);
const GUID *pMediaSubtype;
INT iPosition = 0;
// Scan the mapping list seeing if the source GUID matches any known
// bitmap subtypes, the list is terminated by a GUID_NULL entry
while (TRUE) {
pMediaSubtype = BitCountMap[iPosition].pSubtype;
if (IsEqualGUID(*pMediaSubtype,*pSubtype) ||
IsEqualGUID(*pMediaSubtype,GUID_NULL)
)
{
break;
}
iPosition++;
}
return iPosition;
}
STDAPI_(WCHAR *) GetSubtypeNameW(const GUID *pSubtype)
{
return BitCountMap[LocateSubtype(pSubtype)].wszName;
}
STDAPI_(CHAR *) GetSubtypeNameA(const GUID *pSubtype)
{
return BitCountMap[LocateSubtype(pSubtype)].pName;
}
#ifndef GetSubtypeName
#error wxutil.h should have defined GetSubtypeName
#endif
#undef GetSubtypeName
// this is here for people that linked to it directly; most people
// would use the header file that picks the A or W version.
STDAPI_(CHAR *) GetSubtypeName(const GUID *pSubtype)
{
return GetSubtypeNameA(pSubtype);
}
// The mechanism for describing a bitmap format is with the BITMAPINFOHEADER
// This is really messy to deal with because it invariably has fields that
// follow it holding bit fields, palettes and the rest. This function gives
// the number of bytes required to hold a VIDEOINFO that represents it. This
// count includes the prefix information (like the rcSource rectangle) the
// BITMAPINFOHEADER field, and any other colour information on the end.
//
// WARNING If you want to copy a BITMAPINFOHEADER into a VIDEOINFO always make
// sure that you use the HEADER macro because the BITMAPINFOHEADER field isn't
// right at the start of the VIDEOINFO (there are a number of other fields),
//
// CopyMemory(HEADER(pVideoInfo),pbmi,sizeof(BITMAPINFOHEADER));
//
STDAPI_(LONG) GetBitmapFormatSize(const BITMAPINFOHEADER *pHeader)
{
// Everyone has this to start with this
LONG Size = SIZE_PREHEADER + pHeader->biSize;
ASSERT(pHeader->biSize >= sizeof(BITMAPINFOHEADER));
// Does this format use a palette, if the number of colours actually used
// is zero then it is set to the maximum that are allowed for that colour
// depth (an example is 256 for eight bits). Truecolour formats may also
// pass a palette with them in which case the used count is non zero
// This would scare me.
ASSERT(pHeader->biBitCount <= iPALETTE || pHeader->biClrUsed == 0);
if (pHeader->biBitCount <= iPALETTE || pHeader->biClrUsed) {
LONG Entries = (DWORD) 1 << pHeader->biBitCount;
if (pHeader->biClrUsed) {
Entries = pHeader->biClrUsed;
}
Size += Entries * sizeof(RGBQUAD);
}
// Truecolour formats may have a BI_BITFIELDS specifier for compression
// type which means that room for three DWORDs should be allocated that
// specify where in each pixel the RGB colour components may be found
if (pHeader->biCompression == BI_BITFIELDS) {
Size += SIZE_MASKS;
}
// A BITMAPINFO for a palettised image may also contain a palette map that
// provides the information to map from a source palette to a destination
// palette during a BitBlt for example, because this information is only
// ever processed during drawing you don't normally store the palette map
// nor have any way of knowing if it is present in the data structure
return Size;
}
// Returns TRUE if the VIDEOINFO contains a palette
STDAPI_(BOOL) ContainsPalette(const VIDEOINFOHEADER *pVideoInfo)
{
if (PALETTISED(pVideoInfo) == FALSE) {
if (pVideoInfo->bmiHeader.biClrUsed == 0) {
return FALSE;
}
}
return TRUE;
}
// Return a pointer to the first entry in a palette
STDAPI_(const RGBQUAD *) GetBitmapPalette(const VIDEOINFOHEADER *pVideoInfo)
{
if (pVideoInfo->bmiHeader.biCompression == BI_BITFIELDS) {
return TRUECOLOR(pVideoInfo)->bmiColors;
}
return COLORS(pVideoInfo);
}