Loki/include/loki/flex/flex_string_shell.h

1387 lines
42 KiB
C
Raw Normal View History

////////////////////////////////////////////////////////////////////////////////
// flex_string
// Copyright (c) 2001 by Andrei Alexandrescu
// Permission to use, copy, modify, distribute and sell this software for any
// purpose is hereby granted without fee, provided that the above copyright
// notice appear in all copies and that both that copyright notice and this
// permission notice appear in supporting documentation.
// The author makes no representations about the
// suitability of this software for any purpose. It is provided "as is"
// without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////
#ifndef FLEX_STRING_SHELL_INC_
#define FLEX_STRING_SHELL_INC_
// $Id$
///////////////////////////////////////////////////////////////////////////////
// class template flex_string
// This file does not include any storage policy headers
///////////////////////////////////////////////////////////////////////////////
#include <memory>
#include <algorithm>
#include <functional>
#include <cassert>
#include <limits>
#include <stdexcept>
#include "flex_string_details.h"
#include <string>
// Forward declaration for default storage policy
template <typename E, class A> class AllocatorStringStorage;
template <class T> class mallocator
{
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef std::size_t size_type;
//typedef unsigned int size_type;
//typedef std::ptrdiff_t difference_type;
typedef int difference_type;
template <class U>
struct rebind { typedef mallocator<U> other; };
mallocator() {}
mallocator(const mallocator&) {}
//template <class U>
//mallocator(const mallocator<U>&) {}
~mallocator() {}
pointer address(reference x) const { return &x; }
const_pointer address(const_reference x) const
{
return x;
}
pointer allocate(size_type n, const_pointer = 0)
{
using namespace std;
void* p = malloc(n * sizeof(T));
if (!p) throw bad_alloc();
return static_cast<pointer>(p);
}
void deallocate(pointer p, size_type)
{
using namespace std;
free(p);
}
size_type max_size() const
{
return static_cast<size_type>(-1) / sizeof(T);
}
void construct(pointer p, const value_type& x)
{
new(p) value_type(x);
}
void destroy(pointer p)
{
p->~value_type();
}
private:
void operator=(const mallocator&);
};
template<> class mallocator<void>
{
typedef void value_type;
typedef void* pointer;
typedef const void* const_pointer;
template <class U>
struct rebind { typedef mallocator<U> other; };
};
template <class T>
inline bool operator==(const mallocator<T>&,
const mallocator<T>&) {
return true;
}
template <class T>
inline bool operator!=(const mallocator<T>&,
const mallocator<T>&) {
return false;
}
template <class Allocator>
typename Allocator::pointer Reallocate(
Allocator& alloc,
typename Allocator::pointer p,
typename Allocator::size_type oldObjCount,
typename Allocator::size_type newObjCount,
void*)
{
// @@@ not implemented
}
template <class Allocator>
typename Allocator::pointer Reallocate(
Allocator& alloc,
typename Allocator::pointer p,
typename Allocator::size_type oldObjCount,
typename Allocator::size_type newObjCount,
mallocator<void>*)
{
// @@@ not implemented
}
////////////////////////////////////////////////////////////////////////////////
// class template flex_string
// a std::basic_string compatible implementation
// Uses a Storage policy
////////////////////////////////////////////////////////////////////////////////
template <typename E,
class T = std::char_traits<E>,
class A = std::allocator<E>,
class Storage = AllocatorStringStorage<E, A> >
class flex_string : private Storage
{
template <typename Exception>
static void Enforce(bool condition, Exception*, const char* msg)
{ if (!condition) throw Exception(msg); }
bool Sane() const
{
return
begin() <= end() &&
empty() == (size() == 0) &&
empty() == (begin() == end()) &&
size() <= max_size() &&
capacity() <= max_size() &&
size() <= capacity();
}
struct Invariant;
friend struct Invariant;
struct Invariant
{
#ifndef NDEBUG
Invariant(const flex_string& s) : s_(s)
{
assert(s_.Sane());
}
~Invariant()
{
assert(s_.Sane());
}
private:
const flex_string& s_;
#else
Invariant(const flex_string&) {}
#endif
private:
Invariant& operator=(const Invariant&);
};
public:
// types
typedef T traits_type;
typedef typename traits_type::char_type value_type;
typedef A allocator_type;
typedef typename A::size_type size_type;
typedef typename A::difference_type difference_type;
typedef typename Storage::reference reference;
typedef typename A::const_reference const_reference;
typedef typename A::pointer pointer;
typedef typename A::const_pointer const_pointer;
typedef typename Storage::iterator iterator;
typedef typename Storage::const_iterator const_iterator;
typedef std::reverse_iterator<iterator
#ifdef NO_ITERATOR_TRAITS
, value_type
#endif
> reverse_iterator;
typedef std::reverse_iterator<const_iterator
#ifdef NO_ITERATOR_TRAITS
, const value_type
#endif
> const_reverse_iterator;
static const size_type npos; // = size_type(-1)
private:
static size_type Min(size_type lhs, size_type rhs)
{ return lhs < rhs ? lhs : rhs; }
static size_type Max(size_type lhs, size_type rhs)
{ return lhs > rhs ? lhs : rhs; }
static void Procust(size_type& n, size_type nmax)
{ if (n > nmax) n = nmax; }
public:
// 21.3.1 construct/copy/destroy
explicit flex_string(const A& a = A())
: Storage(a)
{}
flex_string(const flex_string& str)
: Storage(str)
{}
flex_string(const flex_string& str, size_type pos,
size_type n = npos, const A& a = A())
: Storage(a)
{
assign(str, pos, n);
}
flex_string(const value_type* s, const A& a = A())
: Storage(s, traits_type::length(s), a)
{}
flex_string(const value_type* s, size_type n, const A& a = A())
: Storage(s, n, a)
{}
flex_string(size_type n, value_type c, const A& a = A())
: Storage(n, c, a)
{}
template <class InputIterator>
flex_string(InputIterator begin, InputIterator end, const A& a = A())
: Storage(a)
{
assign(begin, end);
}
~flex_string()
{}
flex_string& operator=(const flex_string& str)
{
Storage& s = *this;
s = str;
return *this;
}
flex_string& operator=(const value_type* s)
{
assign(s);
return *this;
}
flex_string& operator=(value_type c)
{
assign(1, c);
return *this;
}
// 21.3.2 iterators:
iterator begin()
{ return Storage::begin(); }
const_iterator begin() const
{ return Storage::begin(); }
iterator end()
{ return Storage::end(); }
const_iterator end() const
{ return Storage::end(); }
reverse_iterator rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(end()); }
reverse_iterator rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator rend() const
{ return const_reverse_iterator(begin()); }
// 21.3.3 capacity:
size_type size() const
{ return Storage::size(); }
size_type length() const
{ return size(); }
size_type max_size() const
{ return Storage::max_size(); }
void resize(size_type n, value_type c)
{ Storage::resize(n, c); }
void resize(size_type n)
{ resize(n, value_type()); }
size_type capacity() const
{ return Storage::capacity(); }
void reserve(size_type res_arg = 0)
{
Enforce(res_arg <= max_size(), static_cast<std::length_error*>(0), "");
Storage::reserve(res_arg);
}
void clear()
{ resize(0); }
bool empty() const
{ return size() == 0; }
// 21.3.4 element access:
const_reference operator[](size_type pos) const
{ return *(c_str() + pos); }
reference operator[](size_type pos)
{ return *(begin() + pos); }
const_reference at(size_type n) const
{
Enforce(n <= size(), static_cast<std::out_of_range*>(0), "");
return (*this)[n];
}
reference at(size_type n)
{
Enforce(n < size(), static_cast<std::out_of_range*>(0), "");
return (*this)[n];
}
// 21.3.5 modifiers:
flex_string& operator+=(const flex_string& str)
{ return append(str); }
flex_string& operator+=(const value_type* s)
{ return append(s); }
flex_string& operator+=(const value_type c)
{
push_back(c);
return *this;
}
flex_string& append(const flex_string& str)
{ return append(str.data(), str.length()); }
flex_string& append(const flex_string& str, const size_type pos,
size_type n)
{
const size_type sz = str.size();
Enforce(pos <= sz, static_cast<std::out_of_range*>(0), "");
Procust(n, sz - pos);
return append(str.data() + pos, n);
}
flex_string& append(const value_type* s, const size_type n)
{
Invariant checker(*this);
(void) checker;
if (IsAliasedRange(s, s + n))
{
const size_type offset = s - &*begin();
Storage::reserve(size() + n);
s = &*begin() + offset;
}
Storage::append(s, s + n);
return *this;
}
flex_string& append(const value_type* s)
{ return append(s, traits_type::length(s)); }
flex_string& append(size_type n, value_type c)
{
resize(size() + n, c);
return *this;
}
template<class InputIterator>
flex_string& append(InputIterator first, InputIterator last)
{
insert(end(), first, last);
return *this;
}
void push_back(const value_type c) // primitive
{
const size_type cap = capacity();
if (size() == cap)
{
reserve(cap << 1u);
}
Storage::append(&c, &c + 1);
}
flex_string& assign(const flex_string& str)
{
if (&str == this) return *this;
return assign(str.data(), str.size());
}
flex_string& assign(const flex_string& str, const size_type pos,
size_type n)
{
const size_type sz = str.size();
Enforce(pos <= sz, static_cast<std::out_of_range*>(0), "");
Procust(n, sz - pos);
return assign(str.data() + pos, n);
}
flex_string& assign(const value_type* s, const size_type n)
{
Invariant checker(*this);
(void) checker;
if (size() >= n)
{
std::copy(s, s + n, begin());
resize(n);
}
else
{
const value_type *const s2 = s + size();
std::copy(s, s2, begin());
append(s2, n - size());
}
return *this;
}
flex_string& assign(const value_type* s)
{ return assign(s, traits_type::length(s)); }
template <class ItOrLength, class ItOrChar>
flex_string& assign(ItOrLength first_or_n, ItOrChar last_or_c)
{ return replace(begin(), end(), first_or_n, last_or_c); }
flex_string& insert(size_type pos1, const flex_string& str)
{ return insert(pos1, str.data(), str.size()); }
flex_string& insert(size_type pos1, const flex_string& str,
size_type pos2, size_type n)
{
Enforce(pos2 <= str.length(), static_cast<std::out_of_range*>(0), "");
Procust(n, str.length() - pos2);
return insert(pos1, str.data() + pos2, n);
}
flex_string& insert(size_type pos, const value_type* s, size_type n)
{
Enforce(pos <= length(), static_cast<std::out_of_range*>(0), "");
insert(begin() + pos, s, s + n);
return *this;
}
flex_string& insert(size_type pos, const value_type* s)
{ return insert(pos, s, traits_type::length(s)); }
flex_string& insert(size_type pos, size_type n, value_type c)
{
Enforce(pos <= length(), static_cast<std::out_of_range*>(0), "");
insert(begin() + pos, n, c);
return *this;
}
iterator insert(const iterator p, const value_type c)
{
const size_type pos = p - begin();
insert(p, 1, c);
return begin() + pos;
}
private:
// Care must be taken when dereferencing some iterator types.
//
// Users can implement this function in their namespace if their storage uses a special iterator type,
// the function will be found through ADL.
template<class Iterator>
const typename std::iterator_traits<Iterator>::value_type * DereferenceValidIterator(Iterator it) const
{
return &*it;
}
// Care must be taken when dereferencing a reverse iterators, hence this special case.
// This isn't in the std namespace so as not to pollute it or create name clashes.
template<typename Iterator>
const typename std::iterator_traits<Iterator>::value_type * DereferenceValidIterator(
std::reverse_iterator<Iterator> it) const
{
return &*--it;
}
// Determine if the range aliases the current string.
//
// This method cannot be const because calling begin/end on copy-on-write implementations must have side effects.
// A const version wouldn't make the string unique through this call.
template<class Iterator>
bool IsAliasedRange(Iterator beginIterator, Iterator endIterator)
{
if(!empty() && beginIterator != endIterator)
{
typedef const typename std::iterator_traits<Iterator>::value_type * pointer;
pointer myBegin(&*begin());
pointer myEnd(&*begin() + size());
pointer rangeBegin(DereferenceValidIterator(beginIterator));
const std::less_equal<pointer> less_equal = std::less_equal<pointer>();
if(less_equal(myBegin, rangeBegin) && less_equal(rangeBegin, myEnd))
return true;
}
return false;
}
template <int i> class Selector {};
flex_string& InsertImplDiscr(iterator p,
size_type n, value_type c, Selector<1>)
{
Invariant checker(*this);
(void) checker;
assert(begin() <= p && p <= end());
const size_type insertOffset(p - begin());
const size_type originalSize(size());
if(n < originalSize - insertOffset)
{
// The new characters fit within the original string.
// The characters that are pushed back need to be moved because they're aliased.
// The appended characters will all be overwritten by the move.
append(n, value_type(0));
value_type * begin(&*begin());
flex_string_details::pod_move(begin + insertOffset, begin + originalSize, begin + insertOffset + n);
std::fill(begin + insertOffset, begin + insertOffset + n, c);
}
else
{
// The new characters exceed the original string.
// The characters that are pushed back can simply be copied since they aren't aliased.
// The appended characters will partly be overwritten by the copy.
append(n, c);
value_type * begin(&*begin());
flex_string_details::pod_copy(begin + insertOffset, begin + originalSize, begin + insertOffset + n);
std::fill(begin + insertOffset, begin + originalSize, c);
}
return *this;
}
template<class InputIterator>
flex_string& InsertImplDiscr(iterator i,
InputIterator b, InputIterator e, Selector<0>)
{
InsertImpl(i, b, e,
typename std::iterator_traits<InputIterator>::iterator_category());
return *this;
}
template <class FwdIterator>
void InsertImpl(iterator i,
FwdIterator s1, FwdIterator s2, std::forward_iterator_tag)
{
if(s1 == s2)
{
// Insert an empty range.
return;
}
if(IsAliasedRange(s1, s2))
{
// The source range is contained in the current string, copy it and recurse.
const flex_string temporary(s1, s2);
InsertImpl(i, temporary.begin(), temporary.end(),
typename std::iterator_traits<FwdIterator>::iterator_category());
return;
}
Invariant checker(*this);
(void) checker;
const size_type pos = i - begin();
const typename std::iterator_traits<FwdIterator>::difference_type n2 =
std::distance(s1, s2);
assert(n2 >= 0);
using namespace flex_string_details;
assert(pos <= size());
const typename std::iterator_traits<FwdIterator>::difference_type maxn2 =
capacity() - size();
if (maxn2 < n2)
{
// Reallocate the string.
assert(!IsAliasedRange(s1, s2));
reserve(size() + n2);
i = begin() + pos;
}
if (pos + n2 <= size())
{
//const iterator oldEnd = end();
//Storage::append(oldEnd - n2, n2);
//std::copy(i, oldEnd - n2, i + n2);
const iterator tailBegin = end() - n2;
Storage::append(tailBegin, tailBegin + n2);
//std::copy(i, tailBegin, i + n2);
std::copy(reverse_iterator(tailBegin), reverse_iterator(i),
reverse_iterator(tailBegin + n2));
std::copy(s1, s2, i);
}
else
{
FwdIterator t = s1;
const size_type old_size = size();
std::advance(t, old_size - pos);
assert(std::distance(t, s2) >= 0);
Storage::append(t, s2);
Storage::append(data() + pos, data() + old_size);
std::copy(s1, t, i);
}
}
template <class InputIterator>
void InsertImpl(iterator insertPosition,
InputIterator inputBegin, InputIterator inputEnd, std::input_iterator_tag)
{
flex_string temporary(begin(), insertPosition);
for (; inputBegin != inputEnd; ++inputBegin)
{
temporary.push_back(*inputBegin);
}
temporary.append(insertPosition, end());
swap(temporary);
}
public:
template <class ItOrLength, class ItOrChar>
void insert(iterator p, ItOrLength first_or_n, ItOrChar last_or_c)
{
Selector<std::numeric_limits<ItOrLength>::is_specialized> sel;
InsertImplDiscr(p, first_or_n, last_or_c, sel);
}
flex_string& erase(size_type pos = 0, size_type n = npos)
{
Invariant checker(*this);
(void) checker;
Enforce(pos <= length(), static_cast<std::out_of_range*>(0), "");
Procust(n, length() - pos);
std::copy(begin() + pos + n, end(), begin() + pos);
resize(length() - n);
return *this;
}
iterator erase(iterator position)
{
const size_type pos(position - begin());
erase(pos, 1);
return begin() + pos;
}
iterator erase(iterator first, iterator last)
{
const size_type pos(first - begin());
erase(pos, last - first);
return begin() + pos;
}
// Replaces at most n1 chars of *this, starting with pos1 with the content of str
flex_string& replace(size_type pos1, size_type n1, const flex_string& str)
{ return replace(pos1, n1, str.data(), str.size()); }
// Replaces at most n1 chars of *this, starting with pos1,
// with at most n2 chars of str starting with pos2
flex_string& replace(size_type pos1, size_type n1, const flex_string& str,
size_type pos2, size_type n2)
{
Enforce(pos2 <= str.length(), static_cast<std::out_of_range*>(0), "");
return replace(pos1, n1, str.data() + pos2,
Min(n2, str.size() - pos2));
}
/*
// Replaces at most n1 chars of *this, starting with pos,
// with at most n2 chars of str.
// str must have at least n2 chars.
flex_string& replace(const size_type pos, size_type n1,
const value_type* s1, const size_type n2)
{
Invariant checker(*this);
(void) checker;
Enforce(pos <= size(), (std::out_of_range*)0, "");
Procust(n1, size() - pos);
const iterator b = begin() + pos;
return replace(b, b + n1, s1, s1 + n2);
using namespace flex_string_details;
const int delta = int(n2 - n1);
const bool aliased = IsAliasedRange(s1, s1 + n2);
// From here on we're dealing with an aliased replace
if (delta <= 0)
{
// simple case, we're shrinking
pod_move(s1, s1 + n2, &*begin() + pos);
pod_move(&*begin() + pos + n1, &*end(), &*begin() + pos + n1 + delta);
resize(size() + delta);
return *this;
}
// From here on we deal with aliased growth
if (capacity() < size() + delta)
{
// realloc the string
const size_type offset = s1 - data();
reserve(size() + delta);
s1 = data() + offset;
}
const value_type* s2 = s1 + n2;
value_type* d1 = &*begin() + pos;
value_type* d2 = d1 + n1;
const int tailLen = int(&*end() - d2);
if (delta <= tailLen)
{
value_type* oldEnd = &*end();
// simple case
Storage::append(oldEnd - delta, delta);
pod_move(d2, d2 + (tailLen - delta), d2 + delta);
if (le(d2, s1))
{
pod_copy(s1 + delta, s2 + delta, d1);
}
else
{
// d2 > s1
if (le(d2, s2))
{
pod_move(s1, d2, d1);
pod_move(d2 + delta, s2 + delta, d1 + (d2 - s1));
}
else
{
pod_move(s1, s2, d1);
}
}
}
else
{
const size_type sz = delta - tailLen;
Storage::append(s2 - sz, sz);
Storage::append(d2, tailLen);
pod_move(s1, s2 - (delta - tailLen), d1);
}
return *this;
}
*/
// Replaces at most n1 chars of *this, starting with pos, with chars from s
flex_string& replace(size_type pos, size_type n1, const value_type* s)
{ return replace(pos, n1, s, traits_type::length(s)); }
// Replaces at most n1 chars of *this, starting with pos, with n2 occurences of c
// consolidated with
// Replaces at most n1 chars of *this, starting with pos,
// with at most n2 chars of str.
// str must have at least n2 chars.
template <class StrOrLength, class NumOrChar>
flex_string& replace(size_type pos, size_type n1,
StrOrLength s_or_n2, NumOrChar n_or_c)
{
Invariant checker(*this);
(void) checker;
Enforce(pos <= size(), static_cast<std::out_of_range*>(0), "");
Procust(n1, length() - pos);
const iterator b = begin() + pos;
return replace(b, b + n1, s_or_n2, n_or_c);
}
flex_string& replace(iterator i1, iterator i2, const flex_string& str)
{ return replace(i1, i2, str.data(), str.length()); }
flex_string& replace(iterator i1, iterator i2, const value_type* s)
{ return replace(i1, i2, s, traits_type::length(s)); }
private:
flex_string& ReplaceImplDiscr(iterator i1, iterator i2,
const value_type* s, size_type n, Selector<2>)
{
assert(i1 <= i2);
assert(begin() <= i1 && i1 <= end());
assert(begin() <= i2 && i2 <= end());
return replace(i1, i2, s, s + n);
}
flex_string& ReplaceImplDiscr(iterator i1, iterator i2,
size_type n2, value_type c, Selector<1>)
{
const size_type n1 = i2 - i1;
if (n1 > n2)
{
std::fill(i1, i1 + n2, c);
erase(i1 + n2, i2);
}
else
{
std::fill(i1, i2, c);
insert(i2, n2 - n1, c);
}
return *this;
}
template <class InputIterator>
flex_string& ReplaceImplDiscr(iterator i1, iterator i2,
InputIterator b, InputIterator e, Selector<0>)
{
ReplaceImpl(i1, i2, b, e,
typename std::iterator_traits<InputIterator>::iterator_category());
return *this;
}
template <class FwdIterator>
void ReplaceImpl(iterator i1, iterator i2,
FwdIterator s1, FwdIterator s2, std::forward_iterator_tag)
{
Invariant checker(*this);
(void) checker;
const typename std::iterator_traits<iterator>::difference_type n1 =
i2 - i1;
assert(n1 >= 0);
const typename std::iterator_traits<FwdIterator>::difference_type n2 =
std::distance(s1, s2);
assert(n2 >= 0);
if (IsAliasedRange(s1, s2))
{
// Aliased replace, copy to new string.
flex_string temporary;
temporary.reserve(size() - n1 + n2);
temporary.append(begin(), i1).append(s1, s2).append(i2, end());
swap(temporary);
return;
}
if (n1 > n2)
{
// Shrinks.
std::copy(s1, s2, i1);
erase(i1 + n2, i2);
}
else
{
// Grows.
flex_string_details::copy_n(s1, n1, i1);
std::advance(s1, n1);
insert(i2, s1, s2);
}
}
template <class InputIterator>
void ReplaceImpl(iterator i1, iterator i2,
InputIterator b, InputIterator e, std::input_iterator_tag)
{
flex_string temp(begin(), i1);
temp.append(b, e).append(i2, end());
swap(temp);
}
public:
template <class T1, class T2>
flex_string& replace(iterator i1, iterator i2,
T1 first_or_n_or_s, T2 last_or_c_or_n)
{
const bool
num1 = std::numeric_limits<T1>::is_specialized,
num2 = std::numeric_limits<T2>::is_specialized;
return ReplaceImplDiscr(i1, i2, first_or_n_or_s, last_or_c_or_n,
Selector<num1 ? (num2 ? 1 : -1) : (num2 ? 2 : 0)>());
}
size_type copy(value_type* s, size_type n, size_type pos = 0) const
{
Enforce(pos <= size(), static_cast<std::out_of_range*>(0), "");
Procust(n, size() - pos);
flex_string_details::pod_copy(
data() + pos,
data() + pos + n,
s);
return n;
}
void swap(flex_string& rhs)
{
Storage& srhs = rhs;
this->Storage::swap(srhs);
}
// 21.3.6 string operations:
const value_type* c_str() const
{ return Storage::c_str(); }
const value_type* data() const
{ return Storage::data(); }
allocator_type get_allocator() const
{ return Storage::get_allocator(); }
size_type find(const flex_string& str, size_type pos = 0) const
{ return find(str.data(), pos, str.length()); }
size_type find (const value_type* s, size_type pos, size_type n) const
{
const size_type size(size());
if (n + pos > size)
return npos;
for (; pos + n <= size; ++pos)
{
if (traits_type::compare(data() + pos, s, n) == 0)
{
return pos;
}
}
return npos;
}
size_type find (const value_type* s, size_type pos = 0) const
{ return find(s, pos, traits_type::length(s)); }
size_type find (value_type c, size_type pos = 0) const
{ return find(&c, pos, 1); }
size_type rfind(const flex_string& str, size_type pos = npos) const
{ return rfind(str.data(), pos, str.length()); }
size_type rfind(const value_type* s, size_type pos, size_type n) const
{
if (n > length()) return npos;
pos = Min(pos, length() - n);
if (n == 0) return pos;
const_iterator i(begin() + pos);
for (; ; --i)
{
if (traits_type::eq(*i, *s)
&& traits_type::compare(&*i, s, n) == 0)
{
return i - begin();
}
if (i == begin()) break;
}
return npos;
}
size_type rfind(const value_type* s, size_type pos = npos) const
{ return rfind(s, pos, traits_type::length(s)); }
size_type rfind(value_type c, size_type pos = npos) const
{ return rfind(&c, pos, 1); }
size_type find_first_of(const flex_string& str, size_type pos = 0) const
{ return find_first_of(str.data(), pos, str.length()); }
size_type find_first_of(const value_type* s,
size_type pos, size_type n) const
{
if (pos > length() || n == 0) return npos;
const_iterator i(begin() + pos),
finish(end());
for (; i != finish; ++i)
{
if (traits_type::find(s, n, *i) != 0)
{
return i - begin();
}
}
return npos;
}
size_type find_first_of(const value_type* s, size_type pos = 0) const
{ return find_first_of(s, pos, traits_type::length(s)); }
size_type find_first_of(value_type c, size_type pos = 0) const
{ return find_first_of(&c, pos, 1); }
size_type find_last_of (const flex_string& str,
size_type pos = npos) const
{ return find_last_of(str.data(), pos, str.length()); }
size_type find_last_of (const value_type* s, size_type pos,
size_type n) const
{
if (!empty() && n > 0)
{
pos = Min(pos, length() - 1);
const_iterator i(begin() + pos);
for (;; --i)
{
if (traits_type::find(s, n, *i) != 0)
{
return i - begin();
}
if (i == begin()) break;
}
}
return npos;
}
size_type find_last_of (const value_type* s,
size_type pos = npos) const
{ return find_last_of(s, pos, traits_type::length(s)); }
size_type find_last_of (value_type c, size_type pos = npos) const
{ return find_last_of(&c, pos, 1); }
size_type find_first_not_of(const flex_string& str,
size_type pos = 0) const
{ return find_first_not_of(str.data(), pos, str.size()); }
size_type find_first_not_of(const value_type* s, size_type pos,
size_type n) const
{
if (pos < length())
{
const_iterator
i(begin() + pos),
finish(end());
for (; i != finish; ++i)
{
if (traits_type::find(s, n, *i) == 0)
{
return i - begin();
}
}
}
return npos;
}
size_type find_first_not_of(const value_type* s,
size_type pos = 0) const
{ return find_first_not_of(s, pos, traits_type::length(s)); }
size_type find_first_not_of(value_type c, size_type pos = 0) const
{ return find_first_not_of(&c, pos, 1); }
size_type find_last_not_of(const flex_string& str,
size_type pos = npos) const
{ return find_last_not_of(str.data(), pos, str.length()); }
size_type find_last_not_of(const value_type* s, size_type pos,
size_type n) const
{
if (!this->empty())
{
pos = Min(pos, size() - 1);
const_iterator i(begin() + pos);
for (;; --i)
{
if (traits_type::find(s, n, *i) == 0)
{
return i - begin();
}
if (i == begin()) break;
}
}
return npos;
}
size_type find_last_not_of(const value_type* s,
size_type pos = npos) const
{ return find_last_not_of(s, pos, traits_type::length(s)); }
size_type find_last_not_of (value_type c, size_type pos = npos) const
{ return find_last_not_of(&c, pos, 1); }
flex_string substr(size_type pos = 0, size_type n = npos) const
{
Enforce(pos <= size(), static_cast<std::out_of_range*>(0), "");
return flex_string(data() + pos, Min(n, size() - pos));
}
int compare(const flex_string& str) const
{
// FIX due to Goncalo N M de Carvalho July 18, 2005
return compare(0, size(), str);
}
int compare(size_type pos1, size_type n1,
const flex_string& str) const
{ return compare(pos1, n1, str.data(), str.size()); }
// FIX to compare: added the TC
// (http://www.comeaucomputing.com/iso/lwg-defects.html number 5)
// Thanks to Caleb Epstein for the fix
int compare(size_type pos1, size_type n1,
const value_type* s) const
{
return compare(pos1, n1, s, traits_type::length(s));
}
int compare(size_type pos1, size_type n1,
const value_type* s, size_type n2) const
{
Enforce(pos1 <= size(), static_cast<std::out_of_range*>(0), "");
Procust(n1, size() - pos1);
// The line below fixed by Jean-Francois Bastien, 04-23-2007. Thanks!
const int r = traits_type::compare(pos1 + data(), s, Min(n1, n2));
return r != 0 ? r : n1 > n2 ? 1 : n1 < n2 ? -1 : 0;
}
int compare(size_type pos1, size_type n1,
const flex_string& str,
size_type pos2, size_type n2) const
{
Enforce(pos2 <= str.size(), static_cast<std::out_of_range*>(0), "");
return compare(pos1, n1, str.data() + pos2, Min(n2, str.size() - pos2));
}
// Code from Jean-Francois Bastien (03/26/2007)
int compare(const value_type* s) const
{
// Could forward to compare(0, size(), s, traits_type::length(s))
// but that does two extra checks
const size_type n1(size()), n2(traits_type::length(s));
const int r = traits_type::compare(data(), s, Min(n1, n2));
return r != 0 ? r : n1 > n2 ? 1 : n1 < n2 ? -1 : 0;
}
};
// non-member functions
template <typename E, class T, class A, class S>
flex_string<E, T, A, S> operator+(const flex_string<E, T, A, S>& lhs,
const flex_string<E, T, A, S>& rhs)
{
flex_string<E, T, A, S> result;
result.reserve(lhs.size() + rhs.size());
result.append(lhs).append(rhs);
return result;
}
template <typename E, class T, class A, class S>
flex_string<E, T, A, S> operator+(const typename flex_string<E, T, A, S>::value_type* lhs,
const flex_string<E, T, A, S>& rhs)
{
flex_string<E, T, A, S> result;
const typename flex_string<E, T, A, S>::size_type len =
flex_string<E, T, A, S>::traits_type::length(lhs);
result.reserve(len + rhs.size());
result.append(lhs, len).append(rhs);
return result;
}
template <typename E, class T, class A, class S>
flex_string<E, T, A, S> operator+(
typename flex_string<E, T, A, S>::value_type lhs,
const flex_string<E, T, A, S>& rhs)
{
flex_string<E, T, A, S> result;
result.reserve(1 + rhs.size());
result.push_back(lhs);
result.append(rhs);
return result;
}
template <typename E, class T, class A, class S>
flex_string<E, T, A, S> operator+(const flex_string<E, T, A, S>& lhs,
const typename flex_string<E, T, A, S>::value_type* rhs)
{
typedef typename flex_string<E, T, A, S>::size_type size_type;
typedef typename flex_string<E, T, A, S>::traits_type traits_type;
flex_string<E, T, A, S> result;
const size_type len = traits_type::length(rhs);
result.reserve(lhs.size() + len);
result.append(lhs).append(rhs, len);
return result;
}
template <typename E, class T, class A, class S>
flex_string<E, T, A, S> operator+(const flex_string<E, T, A, S>& lhs,
typename flex_string<E, T, A, S>::value_type rhs)
{
flex_string<E, T, A, S> result;
result.reserve(lhs.size() + 1);
result.append(lhs);
result.push_back(rhs);
return result;
}
template <typename E, class T, class A, class S>
bool operator==(const flex_string<E, T, A, S>& lhs,
const flex_string<E, T, A, S>& rhs)
{ return lhs.compare(rhs) == 0; }
template <typename E, class T, class A, class S>
bool operator==(const typename flex_string<E, T, A, S>::value_type* lhs,
const flex_string<E, T, A, S>& rhs)
{ return rhs == lhs; }
template <typename E, class T, class A, class S>
bool operator==(const flex_string<E, T, A, S>& lhs,
const typename flex_string<E, T, A, S>::value_type* rhs)
{ return lhs.compare(rhs) == 0; }
template <typename E, class T, class A, class S>
bool operator!=(const flex_string<E, T, A, S>& lhs,
const flex_string<E, T, A, S>& rhs)
{ return !(lhs == rhs); }
template <typename E, class T, class A, class S>
bool operator!=(const typename flex_string<E, T, A, S>::value_type* lhs,
const flex_string<E, T, A, S>& rhs)
{ return !(lhs == rhs); }
template <typename E, class T, class A, class S>
bool operator!=(const flex_string<E, T, A, S>& lhs,
const typename flex_string<E, T, A, S>::value_type* rhs)
{ return !(lhs == rhs); }
template <typename E, class T, class A, class S>
bool operator<(const flex_string<E, T, A, S>& lhs,
const flex_string<E, T, A, S>& rhs)
{ return lhs.compare(rhs) < 0; }
template <typename E, class T, class A, class S>
bool operator<(const flex_string<E, T, A, S>& lhs,
const typename flex_string<E, T, A, S>::value_type* rhs)
{ return lhs.compare(rhs) < 0; }
template <typename E, class T, class A, class S>
bool operator<(const typename flex_string<E, T, A, S>::value_type* lhs,
const flex_string<E, T, A, S>& rhs)
{ return rhs.compare(lhs) > 0; }
template <typename E, class T, class A, class S>
bool operator>(const flex_string<E, T, A, S>& lhs,
const flex_string<E, T, A, S>& rhs)
{ return rhs < lhs; }
template <typename E, class T, class A, class S>
bool operator>(const flex_string<E, T, A, S>& lhs,
const typename flex_string<E, T, A, S>::value_type* rhs)
{ return rhs < lhs; }
template <typename E, class T, class A, class S>
bool operator>(const typename flex_string<E, T, A, S>::value_type* lhs,
const flex_string<E, T, A, S>& rhs)
{ return rhs < lhs; }
template <typename E, class T, class A, class S>
bool operator<=(const flex_string<E, T, A, S>& lhs,
const flex_string<E, T, A, S>& rhs)
{ return !(rhs < lhs); }
template <typename E, class T, class A, class S>
bool operator<=(const flex_string<E, T, A, S>& lhs,
const typename flex_string<E, T, A, S>::value_type* rhs)
{ return !(rhs < lhs); }
template <typename E, class T, class A, class S>
bool operator<=(const typename flex_string<E, T, A, S>::value_type* lhs,
const flex_string<E, T, A, S>& rhs)
{ return !(rhs < lhs); }
template <typename E, class T, class A, class S>
bool operator>=(const flex_string<E, T, A, S>& lhs,
const flex_string<E, T, A, S>& rhs)
{ return !(lhs < rhs); }
template <typename E, class T, class A, class S>
bool operator>=(const flex_string<E, T, A, S>& lhs,
const typename flex_string<E, T, A, S>::value_type* rhs)
{ return !(lhs < rhs); }
template <typename E, class T, class A, class S>
bool operator>=(const typename flex_string<E, T, A, S>::value_type* lhs,
const flex_string<E, T, A, S>& rhs)
{ return !(lhs < rhs); }
template <typename E, class T, class A, class S>
inline void swap(flex_string<E, T, A, S>& lhs, flex_string<E, T, A, S>& rhs)
{
// 21.3.7.8
lhs.swap(rhs);
}
template <typename E, class T, class A, class S>
std::basic_istream<typename flex_string<E, T, A, S>::value_type,
typename flex_string<E, T, A, S>::traits_type>&
operator>>(
std::basic_istream<typename flex_string<E, T, A, S>::value_type,
typename flex_string<E, T, A, S>::traits_type>& is,
flex_string<E, T, A, S>& str);
template <typename E, class T, class A, class S>
std::basic_ostream<typename flex_string<E, T, A, S>::value_type,
typename flex_string<E, T, A, S>::traits_type>&
operator<<(
std::basic_ostream<typename flex_string<E, T, A, S>::value_type,
typename flex_string<E, T, A, S>::traits_type>& os,
const flex_string<E, T, A, S>& str)
{ return os << str.c_str(); }
template <typename E, class T, class A, class S>
std::basic_istream<typename flex_string<E, T, A, S>::value_type,
typename flex_string<E, T, A, S>::traits_type>&
getline(
std::basic_istream<typename flex_string<E, T, A, S>::value_type,
typename flex_string<E, T, A, S>::traits_type>& is,
flex_string<E, T, A, S>& str,
typename flex_string<E, T, A, S>::value_type delim)
{
size_t nread = 0;
typename basic_istream<typename flex_string<E, T, A, S>::value_type,
typename flex_string<E, T, A, S>::traits_type>::sentry sentry(is, true);
if (sentry) {
basic_streambuf<typename flex_string<E, T, A, S>::value_type,
typename flex_string<E, T, A, S>::traits_type>* buf = is.rdbuf();
str.clear();
while (nread < str.max_size()) {
int c1 = buf->sbumpc();
if (flex_string<E, T, A, S>::traits_type::eq_int_type(c1, flex_string<E, T, A, S>::traits_type::eof())) {
is.setstate(ios_base::eofbit);
break;
}
else {
++nread;
typename flex_string<E, T, A, S>::value_type c = flex_string<E, T, A, S>::traits_type::to_char_type(c1);
if (!flex_string<E, T, A, S>::traits_type::eq(c, delim))
str.push_back(c);
else
break; // Character is extracted but not appended.
}
}
}
if (nread == 0 || nread >= str.max_size())
is.setstate(ios_base::failbit);
return is;
}
template <typename E, class T, class A, class S>
std::basic_istream<typename flex_string<E, T, A, S>::value_type,
typename flex_string<E, T, A, S>::traits_type>&
getline(
std::basic_istream<typename flex_string<E, T, A, S>::value_type,
typename flex_string<E, T, A, S>::traits_type>& is,
flex_string<E, T, A, S>& str)
{
return getline(is, str, is.widen('\n'));
}
template <typename E1, class T, class A, class S>
const typename flex_string<E1, T, A, S>::size_type
flex_string<E1, T, A, S>::npos = static_cast<typename flex_string<E1, T, A, S>::size_type>(-1);
#endif // FLEX_STRING_SHELL_INC_