Loki/include/loki/flex/smallstringopt.h

435 lines
13 KiB
C
Raw Normal View History

////////////////////////////////////////////////////////////////////////////////
// flex_string
// Copyright (c) 2001 by Andrei Alexandrescu
// Permission to use, copy, modify, distribute and sell this software for any
// purpose is hereby granted without fee, provided that the above copyright
// notice appear in all copies and that both that copyright notice and this
// permission notice appear in supporting documentation.
// The author makes no representations about the
// suitability of this software for any purpose. It is provided "as is"
// without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////
#ifndef SMALL_STRING_OPT_INC_
#define SMALL_STRING_OPT_INC_
// $Id$
////////////////////////////////////////////////////////////////////////////////
// class template SmallStringOpt
// Builds the small string optimization over any other storage
////////////////////////////////////////////////////////////////////////////////
/* This is the template for a storage policy
////////////////////////////////////////////////////////////////////////////////
template <typename E, class A = @>
class StoragePolicy
{
typedef E value_type;
typedef @ iterator;
typedef @ const_iterator;
typedef A allocator_type;
typedef @ size_type;
StoragePolicy(const StoragePolicy& s);
StoragePolicy(const A&);
StoragePolicy(const E* s, size_type len, const A&);
StoragePolicy(size_type len, E c, const A&);
~StoragePolicy();
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
size_type size() const;
size_type max_size() const;
size_type capacity() const;
void reserve(size_type res_arg);
void append(const E* s, size_type sz);
template <class InputIterator>
void append(InputIterator b, InputIterator e);
void resize(size_type newSize, E fill);
void swap(StoragePolicy& rhs);
const E* c_str() const;
const E* data() const;
A get_allocator() const;
};
////////////////////////////////////////////////////////////////////////////////
*/
#include <memory>
#include <algorithm>
#include <functional>
#include <cassert>
#include <limits>
#include <stdexcept>
#include "flex_string_details.h"
////////////////////////////////////////////////////////////////////////////////
// class template SmallStringOpt
// Builds the small string optimization over any other storage
////////////////////////////////////////////////////////////////////////////////
template <class Storage, unsigned int threshold,
typename Align = typename Storage::value_type*>
class SmallStringOpt
{
public:
typedef typename Storage::value_type value_type;
typedef value_type* iterator;
typedef const value_type* const_iterator;
typedef typename Storage::allocator_type allocator_type;
typedef typename allocator_type::size_type size_type;
typedef typename Storage::reference reference;
private:
enum { temp1 = threshold * sizeof(value_type) > sizeof(Storage)
? threshold * sizeof(value_type)
: sizeof(Storage) };
enum { temp2 = temp1 > sizeof(Align) ? temp1 : sizeof(Align) };
public:
enum { maxSmallString =
(temp2 + sizeof(value_type) - 1) / sizeof(value_type) };
private:
enum { magic = maxSmallString + 1 };
union
{
mutable value_type buf_[maxSmallString + 1];
Align align_;
};
Storage& GetStorage()
{
assert(buf_[maxSmallString] == magic);
Storage* p = reinterpret_cast<Storage*>(&buf_[0]);
return *p;
}
const Storage& GetStorage() const
{
assert(buf_[maxSmallString] == magic);
const Storage *p = reinterpret_cast<const Storage*>(&buf_[0]);
return *p;
}
bool Small() const
{
return buf_[maxSmallString] != magic;
}
public:
SmallStringOpt(const SmallStringOpt& s)
{
if (s.Small())
{
flex_string_details::pod_copy(
s.buf_,
s.buf_ + s.size(),
buf_);
}
else
{
new(buf_) Storage(s.GetStorage());
}
buf_[maxSmallString] = s.buf_[maxSmallString];
}
SmallStringOpt(const allocator_type&)
{
buf_[maxSmallString] = maxSmallString;
}
SmallStringOpt(const value_type* s, size_type len, const allocator_type& a)
{
if (len <= maxSmallString)
{
flex_string_details::pod_copy(s, s + len, buf_);
buf_[maxSmallString] = value_type(maxSmallString - len);
}
else
{
new(buf_) Storage(s, len, a);
buf_[maxSmallString] = magic;
}
}
SmallStringOpt(size_type len, value_type c, const allocator_type& a)
{
if (len <= maxSmallString)
{
flex_string_details::pod_fill(buf_, buf_ + len, c);
buf_[maxSmallString] = value_type(maxSmallString - len);
}
else
{
new(buf_) Storage(len, c, a);
buf_[maxSmallString] = magic;
}
}
// Fix suggested by Andrew Barnert on 07/03/2007
SmallStringOpt& operator=(const SmallStringOpt& rhs)
{
if (&rhs == this) return *this;
const size_t rhss = rhs.size();
// Will we use this' allocated buffer?
if (rhss > maxSmallString && capacity() > rhss) {
const size_t s = size();
if (s >= rhss) {
// shrink
resize(rhss, 0);
std::copy(rhs.begin(), rhs.end(), begin());
} else {
// grow
std::copy(rhs.begin(), rhs.begin() + s, begin());
append(rhs.begin() + s, rhs.end());
}
} else {
// this' buffer is useless
if (rhs.Small()) {
// Just destroy and copy over (ugly but efficient)
// Works because construction of a small string can't fail
if (!Small()) this->~SmallStringOpt();
new(this) SmallStringOpt(rhs);
} else {
SmallStringOpt copy(rhs);
if (Small()) {
// no need to swap, just destructively read copy into this
// ugly but efficient again
memcpy(this, &copy, sizeof(*this));
copy.buf_[maxSmallString] = maxSmallString; // clear the copy
} else {
// Use the swap trick
copy.swap(*this);
}
}
}
return *this;
}
~SmallStringOpt()
{
if (!Small()) GetStorage().~Storage();
}
iterator begin()
{
if (Small()) return buf_;
return &*GetStorage().begin();
}
const_iterator begin() const
{
if (Small()) return buf_;
return &*GetStorage().begin();
}
iterator end()
{
if (Small()) return buf_ + maxSmallString - buf_[maxSmallString];
return &*GetStorage().end();
}
const_iterator end() const
{
if (Small()) return buf_ + maxSmallString - buf_[maxSmallString];
return &*GetStorage().end();
}
size_type size() const
{
assert(!Small() || maxSmallString >= buf_[maxSmallString]);
return Small()
? maxSmallString - buf_[maxSmallString]
: GetStorage().size();
}
size_type max_size() const
{ return get_allocator().max_size(); }
size_type capacity() const
{ return Small() ? maxSmallString : GetStorage().capacity(); }
void reserve(size_type res_arg)
{
if (Small())
{
if (res_arg <= maxSmallString) return;
SmallStringOpt temp(*this);
this->~SmallStringOpt();
new(buf_) Storage(temp.data(), temp.size(),
temp.get_allocator());
buf_[maxSmallString] = magic;
GetStorage().reserve(res_arg);
}
else
{
GetStorage().reserve(res_arg);
}
assert(capacity() >= res_arg);
}
template <class FwdIterator>
void append(FwdIterator b, FwdIterator e)
{
if (!Small())
{
GetStorage().append(b, e);
}
else
{
// append to a small string
const size_type
sz = std::distance(b, e),
neededCapacity = maxSmallString - buf_[maxSmallString] + sz;
if (maxSmallString < neededCapacity)
{
// need to change storage strategy
allocator_type alloc;
Storage temp(alloc);
temp.reserve(neededCapacity);
temp.append(buf_, buf_ + maxSmallString - buf_[maxSmallString]);
temp.append(b, e);
buf_[maxSmallString] = magic;
new(buf_) Storage(temp.get_allocator());
GetStorage().swap(temp);
}
else
{
std::copy(b, e, buf_ + maxSmallString - buf_[maxSmallString]);
buf_[maxSmallString] -= value_type(sz);
}
}
}
void resize(size_type n, value_type c)
{
if (Small())
{
if (n > maxSmallString)
{
// Small string resized to big string
SmallStringOpt temp(*this); // can't throw
// 11-17-2001: correct exception safety bug
Storage newString(temp.data(), temp.size(),
temp.get_allocator());
newString.resize(n, c);
// We make the reasonable assumption that an empty Storage
// constructor won't throw
this->~SmallStringOpt();
new(&buf_[0]) Storage(temp.get_allocator());
buf_[maxSmallString] = value_type(magic);
GetStorage().swap(newString);
}
else
{
// Small string resized to small string
// 11-17-2001: bug fix: terminating zero not copied
size_type toFill = n > size() ? n - size() : 0;
flex_string_details::pod_fill(end(), end() + toFill, c);
buf_[maxSmallString] = value_type(maxSmallString - n);
}
}
else
{
if (n > maxSmallString)
{
// Big string resized to big string
GetStorage().resize(n, c);
}
else
{
// Big string resized to small string
// 11-17=2001: bug fix in the assertion below
assert(capacity() > n);
// The following two commented-out lines were fixed by
// Jean-Francois Bastien, 07/26/2007
//SmallStringOpt newObj(data(), n, get_allocator());
// newObj.swap(*this);
if (n <= size()) {
SmallStringOpt newObj(data(), n, get_allocator());
newObj.swap(*this);
} else {
SmallStringOpt newObj(data(), size(), get_allocator());
newObj.resize(n, c); // invoke this function recursively
newObj.swap(*this);
}
}
}
}
void swap(SmallStringOpt& rhs)
{
if (Small())
{
if (rhs.Small())
{
// Small swapped with small
std::swap_ranges(buf_, buf_ + maxSmallString + 1,
rhs.buf_);
}
else
{
// Small swapped with big
// Make a copy of myself - can't throw
SmallStringOpt temp(*this);
// Nuke myself
this->~SmallStringOpt();
// Make an empty storage for myself (likely won't throw)
new(buf_) Storage(0, value_type(), rhs.get_allocator());
buf_[maxSmallString] = magic;
// Recurse to this same function
swap(rhs);
// Nuke rhs
rhs.~SmallStringOpt();
// Build the new small string into rhs
new(&rhs) SmallStringOpt(temp);
}
}
else
{
if (rhs.Small())
{
// Big swapped with small
// Already implemented, recurse with reversed args
rhs.swap(*this);
}
else
{
// Big swapped with big
GetStorage().swap(rhs.GetStorage());
}
}
}
const value_type* c_str() const
{
if (!Small()) return GetStorage().c_str();
buf_[maxSmallString - buf_[maxSmallString]] = value_type();
return buf_;
}
const value_type* data() const
{ return Small() ? buf_ : GetStorage().data(); }
allocator_type get_allocator() const
{ return allocator_type(); }
};
#endif // SMALL_STRING_OPT_INC_