1
0
Fork 0
mirror of https://github.com/AquariaOSE/Aquaria.git synced 2024-11-25 17:53:47 +00:00
Aquaria/BBGE/Quad.cpp
fgenesis 58e9ba340e Add skel/bone gridDrawOrder attrib to control the way the gris is drawn
Also ignore grid.z (used as worldmap alpha) by default because it's really
only needed for the world map and ignoring it results in less GL calls.
2022-09-25 04:30:38 +02:00

748 lines
17 KiB
C++

/*
Copyright (C) 2007, 2010 - Bit-Blot
This file is part of Aquaria.
Aquaria is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "Quad.h"
#include "Core.h"
#include "RenderBase.h"
#include <assert.h>
Quad::Quad(const std::string &tex, const Vector &pos)
: RenderObject()
{
renderBorderColor = Vector(1,1,1);
initQuad();
position = pos;
setTexture(tex);
}
void Quad::setSegs(int x, int y, float dgox, float dgoy, float dgmx, float dgmy, float dgtm, bool dgo)
{
deleteGrid();
if (x == 0 || y == 0)
{
doUpdateGrid = false;
}
else
{
doUpdateGrid = true;
this->drawGridOffsetX = dgox;
this->drawGridOffsetY = dgoy;
this->drawGridModX = dgmx;
this->drawGridModY = dgmy;
this->drawGridTimeMultiplier = dgtm;
drawGridOut = dgo;
createGrid(x, y);
}
gridTimer = 0;
}
void Quad::createGrid(int xd, int yd)
{
drawGrid.init(xd, yd);
resetGrid();
Vector *dg = drawGrid.data();
for(size_t i = 0; i < drawGrid.linearsize(); ++i)
dg[i].z = 1.0f;
}
void Quad::setDrawGridAlpha(size_t x, size_t y, float alpha)
{
if (x < drawGrid.width() && y < drawGrid.height())
{
drawGrid(x, y).z = alpha;
}
}
void Quad::setStripPoints(bool vert, const Vector *points, size_t n)
{
if (drawGrid.empty()) return;
resetGrid();
const float mul = float(n);
if (!vert) // horz
{
const size_t xmax = std::min(drawGrid.width(), n);
for (size_t y = 0; y < drawGrid.height(); y++)
{
Vector *row = drawGrid.row(y);
for (size_t x = 0; x < xmax; x++)
row[x] += points[x] * mul;
}
}
else
{
const size_t ymax = std::min(drawGrid.height(), n);
for (size_t x = 0; x < drawGrid.width(); x++)
for (size_t y = 0; y < ymax; y++)
drawGrid(x, y) += points[y] * mul;
}
}
void Quad::ResetGrid(Vector* dst, size_t w, size_t h)
{
assert(w > 1 && h > 1);
const float xMulF = 1.0f / (float)(w-1);
const float yMulF = 1.0f / (float)(h-1);
for (size_t y = 0; y < h; y++)
{
const float yval = float(y)*yMulF-0.5f;
for (size_t x = 0; x < w; x++)
{
dst->x = float(x)*xMulF-0.5f;
dst->y = yval;
++dst;
}
}
}
void Quad::ResetGridAndAlpha(Vector* dst, size_t w, size_t h, float alpha)
{
assert(w > 1 && h > 1);
const float xMulF = 1.0f / (float)(w-1);
const float yMulF = 1.0f / (float)(h-1);
for (size_t y = 0; y < h; y++)
{
const float yval = float(y)*yMulF-0.5f;
for (size_t x = 0; x < w; x++)
{
dst->x = float(x)*xMulF-0.5f;
dst->y = yval;
dst->z = alpha;
++dst;
}
}
}
void Quad::resetGrid()
{
if (drawGrid.empty()) return;
ResetGrid(drawGrid.data(), drawGrid.width(), drawGrid.height());
}
void Quad::initQuad()
{
repeatToFillScale = Vector(1,1);
gridType = GRID_WAVY;
gridTimer = 0;
doUpdateGrid = false;
autoWidth = autoHeight = 0;
renderBorder = false;
renderCenter = true;
width = 2; height = 2;
upperLeftTextureCoordinates = Vector(0,0);
lowerRightTextureCoordinates = Vector(1,1);
renderQuad = true;
}
void Quad::_renderBorder(const RenderState& rs, Vector color, float borderalpha) const
{
glBindTexture(GL_TEXTURE_2D, 0);
if (rs.forceRenderCenter || renderCenter)
{
glColor4f(color.x, color.y, color.z, borderalpha*alpha.x*alphaMod);
glPointSize(16);
glBegin(GL_POINTS);
glVertex2f(0,0);
glEnd();
}
glColor4f(color.x, color.y, color.z, alpha.x*alphaMod);
glLineWidth(2);
const float _w2 = width*0.5f;
const float _h2 = height*0.5f;
glBegin(GL_LINES);
glVertex2f(-_w2, _h2);
glVertex2f(_w2, _h2);
glVertex2f(_w2, -_h2);
glVertex2f(_w2, _h2);
glVertex2f(-_w2, -_h2);
glVertex2f(-_w2, _h2);
glVertex2f(-_w2, -_h2);
glVertex2f(_w2, -_h2);
glEnd();
RenderObject::lastTextureApplied = 0;
}
Quad::Quad() : RenderObject()
{
addType(SCO_QUAD);
borderAlpha = 0.5;
drawOrder = GRID_DRAW_DEFAULT;
initQuad();
}
void Quad::deleteGrid()
{
drawGrid.clear();
}
void Quad::destroy()
{
deleteGrid();
RenderObject::destroy();
}
bool Quad::isCoordinateInside(Vector coord, int minSize) const
{
Vector realscale = getRealScale();
int hw = fabsf((width)*realscale.x)*0.5f;
int hh = fabsf((height)*realscale.y)*0.5f;
if (hw < minSize)
hw = minSize;
if (hh < minSize)
hh = minSize;
Vector pos = getRealPosition();
if (coord.x >= pos.x - hw && coord.x <= pos.x + hw)
{
if (coord.y >= pos.y - hh && coord.y <= pos.y + hh)
{
return true;
}
}
return false;
}
bool Quad::isCoordinateInsideWorld(const Vector &coord, int minSize) const
{
int hw = fabsf((width)*getRealScale().x)*0.5f;
int hh = fabsf((height)*getRealScale().y)*0.5f;
if (hw < minSize)
hw = minSize;
if (hh < minSize)
hh = minSize;
Vector pos = getWorldPosition();
if (coord.x >= pos.x + offset.x - hw && coord.x <= pos.x + offset.x + hw)
{
if (coord.y >= pos.y + offset.y - hh && coord.y <= pos.y + offset.y + hh)
{
return true;
}
}
return false;
}
bool Quad::isCoordinateInsideWorldRect(const Vector &coord, int w, int h) const
{
int hw = w*0.5f;
int hh = h*0.5f;
Vector pos = getWorldPosition();
if (coord.x >= pos.x + offset.x - hw && coord.x <= pos.x + offset.x + hw)
{
if (coord.y >= pos.y + offset.y - hh && coord.y <= pos.y + offset.y + hh)
{
return true;
}
}
return false;
}
void Quad::updateGrid(float dt)
{
if (!doUpdateGrid) return;
if (gridType == GRID_WAVY)
{
gridTimer += dt * drawGridTimeMultiplier;
resetGrid();
size_t hx = drawGrid.width()/2;
for (size_t x = 0; x < drawGrid.width(); x++)
{
float yoffset = x * drawGridOffsetY;
float addY = 0;
if (drawGridModY != 0)
addY = cosf(gridTimer+yoffset)*drawGridModY;
for (size_t y = 0; y < drawGrid.height(); y++)
{
float xoffset = y * drawGridOffsetX;
if (drawGridModX != 0)
{
float addX = (sinf(gridTimer+xoffset)*drawGridModX);
if (drawGridOut && x < hx)
drawGrid(x,y).x += addX;
else
drawGrid(x,y).x -= addX;
}
drawGrid(x,y).y += addY;
}
}
}
}
void Quad::renderGrid(const RenderState& rs) const
{
if (drawGrid.width() < 2 || drawGrid.height() < 2)
return;
switch(drawOrder)
{
case GRID_DRAW_LRTB:
renderGrid_LRTB(rs);
break;
case GRID_DRAW_LRBT:
renderGrid_LRBT(rs);
break;
case GRID_DRAW_WORLDMAP:
renderGridWithAlpha(rs);
break;
}
// debug points
if (RenderObject::renderCollisionShape)
{
const size_t NX = drawGrid.width()-1;
const size_t NY = drawGrid.height()-1;
const float w = this->getWidth();
const float h = this->getHeight();
glBindTexture(GL_TEXTURE_2D, 0);
glPointSize(2);
glColor3f(1,0,0);
glBegin(GL_POINTS);
for (size_t y = 0; y < NY; y++)
{
for (size_t x = 0; x < NX; x++)
{
glVertex2f(w*drawGrid(x,y).x, h*drawGrid(x,y).y);
glVertex2f(w*drawGrid(x,y+1).x, h*drawGrid(x,y+1).y);
glVertex2f(w*drawGrid(x+1,y+1).x, h*drawGrid(x+1,y+1).y);
glVertex2f(w*drawGrid(x+1,y).x, h*drawGrid(x+1,y).y);
}
}
glEnd();
if (texture)
glBindTexture(GL_TEXTURE_2D, texture->textures[0]);
}
}
void Quad::renderGrid_LRTB(const RenderState& rs) const
{
const float percentX = lowerRightTextureCoordinates.x - upperLeftTextureCoordinates.x;
const float percentY = lowerRightTextureCoordinates.y - upperLeftTextureCoordinates.y;
const float baseX = upperLeftTextureCoordinates.x;
const float baseY = upperLeftTextureCoordinates.y;
const size_t NX = drawGrid.width()-1;
const size_t NY = drawGrid.height()-1;
// NOTE: These are used to avoid repeated expensive divide operations,
// but they may cause rounding error of around 1 part per million,
// which could in theory cause minor graphical glitches with broken
// OpenGL implementations. --achurch
const float incX = percentX / float(NX);
const float incY = percentY / float(NY);
const float w = this->getWidth();
const float h = this->getHeight();
const float red = rs.color.x * this->color.x;
const float green = rs.color.y * this->color.y;
const float blue = rs.color.z * this->color.z;
const float alpha = rs.alpha * this->alpha.x * this->alphaMod;
glColor4f(red, green, blue, alpha);
glBegin(GL_QUADS);
float v0 = baseY;
float v1 = v0 + incY;
for (size_t y = 0; y < NY; y++, v0 = v1, v1 += incY)
{
float u0 = baseX;
float u1 = u0 + incX;
const Vector *row0 = drawGrid.row(y);
const Vector *row1 = drawGrid.row(y+1);
for (size_t x = 0; x < NX; x++, u0 = u1, u1 += incX)
{
const Vector dg00 = row0[x];
const Vector dg01 = row1[x];
const Vector dg10 = row0[x+1];
const Vector dg11 = row1[x+1];
glTexCoord2f(u0, v0);
glVertex2f(w*dg00.x, h*dg00.y);
glTexCoord2f(u0, v1);
glVertex2f(w*dg01.x, h*dg01.y);
glTexCoord2f(u1, v1);
glVertex2f(w*dg11.x, h*dg11.y);
glTexCoord2f(u1, v0);
glVertex2f(w*dg10.x, h*dg10.y);
}
}
glEnd();
}
void Quad::renderGrid_LRBT(const RenderState& rs) const
{
const float percentX = lowerRightTextureCoordinates.x - upperLeftTextureCoordinates.x;
const float percentY = upperLeftTextureCoordinates.y - lowerRightTextureCoordinates.y;
const float baseX = upperLeftTextureCoordinates.x;
const float baseY = lowerRightTextureCoordinates.y;
const size_t NX = drawGrid.width()-1;
const size_t NY = drawGrid.height()-1;
// NOTE: These are used to avoid repeated expensive divide operations,
// but they may cause rounding error of around 1 part per million,
// which could in theory cause minor graphical glitches with broken
// OpenGL implementations. --achurch
const float incX = percentX / float(NX);
const float incY = percentY / float(NY);
const float w = this->getWidth();
const float h = this->getHeight();
const float red = rs.color.x * this->color.x;
const float green = rs.color.y * this->color.y;
const float blue = rs.color.z * this->color.z;
const float alpha = rs.alpha * this->alpha.x * this->alphaMod;
glColor4f(red, green, blue, alpha);
glBegin(GL_QUADS);
float v0 = baseY;
float v1 = v0 + incY;
for (size_t y = NY; y --> 0; v0 = v1, v1 += incY)
{
float u0 = baseX;
float u1 = u0 + incX;
const Vector *row0 = drawGrid.row(y+1);
const Vector *row1 = drawGrid.row(y);
for (size_t x = 0; x < NX; x++, u0 = u1, u1 += incX)
{
const Vector dg00 = row0[x];
const Vector dg01 = row1[x];
const Vector dg10 = row0[x+1];
const Vector dg11 = row1[x+1];
glTexCoord2f(u0, v0);
glVertex2f(w*dg00.x, h*dg00.y);
glTexCoord2f(u0, v1);
glVertex2f(w*dg01.x, h*dg01.y);
glTexCoord2f(u1, v1);
glVertex2f(w*dg11.x, h*dg11.y);
glTexCoord2f(u1, v0);
glVertex2f(w*dg10.x, h*dg10.y);
}
}
glEnd();
}
void Quad::renderGridWithAlpha(const RenderState& rs) const
{
const float percentX = fabsf(this->lowerRightTextureCoordinates.x - this->upperLeftTextureCoordinates.x);
const float percentY = fabsf(this->upperLeftTextureCoordinates.y - this->lowerRightTextureCoordinates.y);
const float baseX =
(lowerRightTextureCoordinates.x < upperLeftTextureCoordinates.x)
? lowerRightTextureCoordinates.x : upperLeftTextureCoordinates.x;
const float baseY =
(lowerRightTextureCoordinates.y < upperLeftTextureCoordinates.y)
? lowerRightTextureCoordinates.y : upperLeftTextureCoordinates.y;
const size_t NX = drawGrid.width()-1;
const size_t NY = drawGrid.height()-1;
// NOTE: These are used to avoid repeated expensive divide operations,
// but they may cause rounding error of around 1 part per million,
// which could in theory cause minor graphical glitches with broken
// OpenGL implementations. --achurch
const float incX = percentX / float(NX);
const float incY = percentY / float(NY);
const float w = this->getWidth();
const float h = this->getHeight();
const float red = rs.color.x * this->color.x;
const float green = rs.color.y * this->color.y;
const float blue = rs.color.z * this->color.z;
const float alpha = rs.alpha * this->alpha.x * this->alphaMod;
glBegin(GL_QUADS);
float v0 = 1 - percentY + baseY;
float v1 = v0 + incY;
for (size_t y = 0; y < NY; y++, v0 = v1, v1 += incY)
{
float u0 = baseX;
float u1 = u0 + incX;
const Vector *row0 = drawGrid.row(y);
const Vector *row1 = drawGrid.row(y+1);
for (size_t x = 0; x < NX; x++, u0 = u1, u1 += incX)
{
const Vector dg00 = row0[x];
const Vector dg01 = row1[x];
const Vector dg10 = row0[x+1];
const Vector dg11 = row1[x+1];
if (dg00.z != 0 || dg01.z != 0 || dg10.z != 0 || dg11.z != 0)
{
glColor4f(red, green, blue, alpha*dg00.z);
glTexCoord2f(u0, v0);
glVertex2f(w*dg00.x, h*dg00.y);
glColor4f(red, green, blue, alpha*dg01.z);
glTexCoord2f(u0, v1);
glVertex2f(w*dg01.x, h*dg01.y);
glColor4f(red, green, blue, alpha*dg11.z);
glTexCoord2f(u1, v1);
glVertex2f(w*dg11.x, h*dg11.y);
glColor4f(red, green, blue, alpha*dg10.z);
glTexCoord2f(u1, v0);
glVertex2f(w*dg10.x, h*dg10.y);
}
}
}
glEnd();
}
void Quad::repeatTextureToFill(bool on)
{
repeatTexture = on;
refreshRepeatTextureToFill();
}
void Quad::onRender(const RenderState& rs) const
{
if (!renderQuad) return;
const float _w2 = width*0.5f;
const float _h2 = height*0.5f;
if (drawGrid.empty())
{
glBegin(GL_QUADS);
{
glTexCoord2f(upperLeftTextureCoordinates.x, 1.0f-upperLeftTextureCoordinates.y);
glVertex2f(-_w2, +_h2);
glTexCoord2f(lowerRightTextureCoordinates.x, 1.0f-upperLeftTextureCoordinates.y);
glVertex2f(+_w2, +_h2);
glTexCoord2f(lowerRightTextureCoordinates.x, 1.0f-lowerRightTextureCoordinates.y);
glVertex2f(+_w2, -_h2);
glTexCoord2f(upperLeftTextureCoordinates.x, 1.0f-lowerRightTextureCoordinates.y);
glVertex2f(-_w2, -_h2);
}
glEnd();
}
else
{
renderGrid(rs);
}
if(renderBorder)
_renderBorder(rs, renderBorderColor, borderAlpha);
else if(rs.forceRenderBorder)
_renderBorder(rs, rs.renderBorderColor, rs.renderBorderAlpha);
}
void Quad::flipHorizontal()
{
RenderObject::flipHorizontal();
}
void Quad::flipVertical()
{
if (!_fv)
{
lowerRightTextureCoordinates.y = 0;
upperLeftTextureCoordinates.y = 1;
}
else
{
lowerRightTextureCoordinates.y = 1;
upperLeftTextureCoordinates.y = 0;
}
RenderObject::flipVertical();
}
void Quad::refreshRepeatTextureToFill()
{
if (repeatTexture && texture)
{
upperLeftTextureCoordinates.x = texOff.x;
upperLeftTextureCoordinates.y = texOff.y;
lowerRightTextureCoordinates.x = (width*scale.x*repeatToFillScale.x)/texture->width + texOff.x;
lowerRightTextureCoordinates.y = (height*scale.y*repeatToFillScale.y)/texture->height + texOff.y;
}
else
{
if (fabsf(lowerRightTextureCoordinates.x) > 1 || fabsf(lowerRightTextureCoordinates.y)>1)
lowerRightTextureCoordinates = Vector(1,1);
}
}
void Quad::reloadDevice()
{
RenderObject::reloadDevice();
}
void Quad::onUpdate(float dt)
{
RenderObject::onUpdate(dt);
if (autoWidth == AUTO_VIRTUALWIDTH)
width = core->getVirtualWidth();
else if (autoWidth == AUTO_VIRTUALHEIGHT)
width = core->getVirtualHeight();
if (autoHeight == AUTO_VIRTUALWIDTH)
height = core->getVirtualWidth();
else if (autoHeight == AUTO_VIRTUALHEIGHT)
height = core->getVirtualHeight();
refreshRepeatTextureToFill();
lowerRightTextureCoordinates.update(dt);
upperLeftTextureCoordinates.update(dt);
if (!drawGrid.empty() && alpha.x > 0 && alphaMod > 0)
{
updateGrid(dt);
}
}
void Quad::setWidthHeight(float w, float h)
{
if (h == -1)
height = w;
else
height = h;
width = w;
}
void Quad::setWidth(float w)
{
width = w;
}
void Quad::setHeight(float h)
{
height = h;
}
void Quad::onSetTexture()
{
if (texture)
{
width = this->texture->width;
height = this->texture->height;
}
else
{
width = 64;
height = 64;
}
}
PauseQuad::PauseQuad() : Quad(), pauseLevel(0), positionSnapTo(0)
{
addType(SCO_PAUSEQUAD);
}
PauseQuad::~PauseQuad()
{
}
void PauseQuad::onUpdate(float dt)
{
if (positionSnapTo)
this->position = *positionSnapTo;
if (core->particlesPaused <= pauseLevel)
{
Quad::onUpdate(dt);
}
}
void PauseQuad::setPositionSnapTo(InterpolatedVector *positionSnapTo)
{
this->positionSnapTo = positionSnapTo;
}
CollideQuad::CollideQuad()
: collideRadius(0)
{
addType(SCO_COLLIDE_QUAD);
}
CollideQuad::~CollideQuad()
{
}
void CollideQuad::renderCollision(const RenderState& rs) const
{
if (collideRadius > 0)
{
glPushMatrix();
glLoadIdentity();
core->setupRenderPositionAndScale();
glBindTexture(GL_TEXTURE_2D, 0);
glTranslatef(position.x+offset.x, position.y+offset.y, 0);
glTranslatef(internalOffset.x, internalOffset.y, 0);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glColor4f(1,0,0,0.5);
drawCircle(collideRadius, 8);
glDisable(GL_BLEND);
glTranslatef(offset.x, offset.y,0);
glPopMatrix();
}
}