mirror of
https://github.com/zeldaret/oot.git
synced 2024-12-02 15:55:59 +00:00
86 lines
3.2 KiB
C
86 lines
3.2 KiB
C
|
/**
|
||
|
* File: z_fcurve_data.c
|
||
|
* Description: Interpolation functions for use with Curve SkelAnime
|
||
|
*/
|
||
|
#include "global.h"
|
||
|
#include "z64curve.h"
|
||
|
|
||
|
#define FCURVE_INTERP_CUBIC 0 // Interpolate using a Hermite cubic spline
|
||
|
#define FCURVE_INTERP_NONE 1 // Return the value at the left endpoint instead of interpolating
|
||
|
#define FCURVE_INTERP_LINEAR 2 // Interpolate linearly
|
||
|
|
||
|
/**
|
||
|
* Hermite cubic spline interpolation between two endpoints, a,b. More information available at
|
||
|
* https://en.wikipedia.org/wiki/Cubic_Hermite_spline
|
||
|
*
|
||
|
* @param t interpolation parameter rescaled to lie in [0,1], (x-a)/(b-a)
|
||
|
* @param interval distance (b-a) between the endpoints
|
||
|
* @param y0 p(a)
|
||
|
* @param y1 p(b)
|
||
|
* @param m0 p'(a)
|
||
|
* @param m1 p'(b)
|
||
|
* @return f32 p(t), value of the cubic interpolating polynomial
|
||
|
*/
|
||
|
f32 Curve_CubicHermiteSpline(f32 t, f32 interval, f32 y0, f32 y1, f32 m0, f32 m1) {
|
||
|
f32 t2 = t * t;
|
||
|
f32 t3 = t2 * t;
|
||
|
f32 t3x2 = t3 * 2.0f;
|
||
|
f32 t2x3 = t2 * 3.0f;
|
||
|
|
||
|
// Hermite basis cubics h_{ij} satisfy h_{ij}^{(j)}(i) = 1, the other three values being 0
|
||
|
f32 h00 = t3x2 - t2x3 + 1.0f; // h_{00}(t) = 2t^3 - 3t^2 + 1
|
||
|
f32 h01 = t2x3 - t3x2; // h_{01}(t) = 3t^2 - 2t^3
|
||
|
f32 h10 = t3 - t2 * 2.0f + t; // h_{10}(t) = t^3 - 2t^2 + t
|
||
|
f32 h11 = t3 - t2; // h_{11}(t) = t^3 - t^2
|
||
|
|
||
|
f32 ret = h00 * y0;
|
||
|
|
||
|
ret += h01 * y1;
|
||
|
ret += h10 * m0 * interval;
|
||
|
ret += h11 * m1 * interval;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Interpolates based on an array of CurveInterpKnot.
|
||
|
*
|
||
|
* @param x point at which to interpolate.
|
||
|
* @param knots Beginning of CurveInterpKnot array to use.
|
||
|
* @param knotCount number of knots to read from the array.
|
||
|
* @return f32 interpolated value
|
||
|
*/
|
||
|
f32 Curve_Interpolate(f32 x, CurveInterpKnot* knots, s32 knotCount) {
|
||
|
// If outside the entire interpolation interval, return the value at the near endpoint.
|
||
|
if (x <= knots[0].abscissa) {
|
||
|
return knots[0].ordinate;
|
||
|
} else if (x >= knots[knotCount - 1].abscissa) {
|
||
|
return knots[knotCount - 1].ordinate;
|
||
|
} else {
|
||
|
s32 cur;
|
||
|
|
||
|
for (cur = 0;; cur++) {
|
||
|
s32 next = cur + 1;
|
||
|
// Find the subinterval in which x lies
|
||
|
if (x < knots[next].abscissa) {
|
||
|
if (knots[cur].flags & FCURVE_INTERP_NONE) {
|
||
|
// No interpolation
|
||
|
return knots[cur].ordinate;
|
||
|
} else if (knots[cur].flags & FCURVE_INTERP_LINEAR) {
|
||
|
// Linear interpolation
|
||
|
return knots[cur].ordinate +
|
||
|
((x - (f32)knots[cur].abscissa) / ((f32)knots[next].abscissa - (f32)knots[cur].abscissa)) *
|
||
|
(knots[next].ordinate - knots[cur].ordinate);
|
||
|
} else {
|
||
|
// Cubic interpolation
|
||
|
f32 diff = (f32)knots[next].abscissa - (f32)knots[cur].abscissa;
|
||
|
f32 t = (x - (f32)knots[cur].abscissa) / ((f32)knots[next].abscissa - (f32)knots[cur].abscissa);
|
||
|
|
||
|
return Curve_CubicHermiteSpline(t, diff * (1.0f / 30.0f), knots[cur].ordinate, knots[next].ordinate,
|
||
|
knots[cur].rightGradient, knots[next].leftGradient);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|