1
0
Fork 0
mirror of https://github.com/zeldaret/oot.git synced 2025-05-10 19:13:42 +00:00

[iQue] Import libultra audio library files (#2433)

Note about comments in these files:
The libultra audio library was originally available to developers in
source code form, unlike most of libultra. These files are based on
these source code forms, adapted to meet the style of this project.
The comments in the files as of this commit are, apart from the style,
comments from the original SGI authors.
This commit is contained in:
Tharo 2025-01-21 20:21:48 +00:00 committed by GitHub
parent 5346c978a9
commit afa0842de4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
28 changed files with 3447 additions and 9 deletions

View file

@ -638,6 +638,8 @@ $(BUILD_DIR)/src/libultra/%.o: ASOPTFLAGS := $(EGCS_ASOPTFLAGS)
$(BUILD_DIR)/src/libultra/reg/_%.o: OPTFLAGS := -O0
$(BUILD_DIR)/src/libultra/reg/_%.o: MIPS_VERSION := -mgp64 -mfp64 -mips3
$(BUILD_DIR)/src/libultra/audio/%.o: OPTFLAGS := -O2
$(BUILD_DIR)/src/libultra/libc/ll.o: OPTFLAGS := -O0
$(BUILD_DIR)/src/libultra/libc/llcvt.o: OPTFLAGS := -O0

View file

@ -70,7 +70,6 @@ void* osViGetNextFramebuffer(void);
void osCreatePiManager(OSPri pri, OSMesgQueue* cmdQueue, OSMesg* cmdBuf, s32 cmdMsgCnt);
void __osDevMgrMain(void* arg);
s32 __osPiRawStartDma(s32 dir, u32 cartAddr, void* dramAddr, size_t size);
u32 osVirtualToPhysical(void* vaddr);
void osViBlack(u8 active);
s32 __osSiRawReadIo(void* devAddr, u32* dst);
OSId osGetThreadId(OSThread* thread);

View file

@ -15,4 +15,6 @@
#define OS_PHYSICAL_TO_K0(x) (void*)(((u32)(x)+0x80000000))
#define OS_PHYSICAL_TO_K1(x) (void*)(((u32)(x)+0xA0000000))
u32 osVirtualToPhysical(void* vaddr);
#endif

View file

@ -28,7 +28,7 @@
#endif
#pragma increment_block_number "gc-eu:128 gc-eu-mq:128 gc-jp:128 gc-jp-ce:128 gc-jp-mq:128 gc-us:128 gc-us-mq:128" \
"ntsc-1.2:68 pal-1.0:66 pal-1.1:66"
"ntsc-1.2:66 pal-1.0:64 pal-1.1:64"
StackEntry sDmaMgrStackInfo;
OSMesgQueue sDmaMgrMsgQueue;

View file

@ -40,7 +40,7 @@
* DPad-Up may be pressed to enable sending fault pages over osSyncPrintf as well as displaying them on-screen.
* DPad-Down disables sending fault pages over osSyncPrintf.
*/
#pragma increment_block_number "gc-eu:160 gc-eu-mq:160 gc-eu-mq-dbg:160 gc-jp:160 gc-jp-ce:160 gc-jp-mq:160 gc-us:160" \
#pragma increment_block_number "gc-eu:160 gc-eu-mq:160 gc-eu-mq-dbg:144 gc-jp:160 gc-jp-ce:160 gc-jp-mq:160 gc-us:160" \
"gc-us-mq:160"
#include "global.h"

View file

@ -5,7 +5,7 @@
#include "macros.h"
#include "sys_math3d.h"
#pragma increment_block_number "gc-eu:99 gc-eu-mq:99 gc-jp:99 gc-jp-ce:99 gc-jp-mq:99 gc-us:99 gc-us-mq:99" \
#pragma increment_block_number "gc-eu:98 gc-eu-mq:98 gc-jp:98 gc-jp-ce:98 gc-jp-mq:98 gc-us:98 gc-us-mq:98" \
"ntsc-1.0:80 ntsc-1.1:80 ntsc-1.2:79 pal-1.0:80 pal-1.1:80"
s32 Math3D_LineVsLineClosestTwoPoints(Vec3f* lineAPointA, Vec3f* lineAPointB, Vec3f* lineBPointA, Vec3f* lineBPointB,

View file

@ -3639,7 +3639,7 @@ s32 Camera_KeepOn3(Camera* camera) {
}
#pragma increment_block_number "gc-eu:128 gc-eu-mq:128 gc-jp:128 gc-jp-ce:128 gc-jp-mq:128 gc-us:128 gc-us-mq:128" \
"ntsc-1.0:130 ntsc-1.1:130 ntsc-1.2:130 pal-1.0:128 pal-1.1:128"
"ntsc-1.0:129 ntsc-1.1:129 ntsc-1.2:129 pal-1.0:127 pal-1.1:127"
s32 Camera_KeepOn4(Camera* camera) {
static Vec3f D_8015BD50;

View file

@ -16,7 +16,7 @@
#include "z_lib.h"
#pragma increment_block_number "gc-eu:128 gc-eu-mq:128 gc-jp:128 gc-jp-ce:128 gc-jp-mq:128 gc-us:128 gc-us-mq:128" \
"ntsc-1.0:96 ntsc-1.1:96 ntsc-1.2:96 pal-1.0:96 pal-1.1:96"
"ntsc-1.0:88 ntsc-1.1:88 ntsc-1.2:88 pal-1.0:88 pal-1.1:88"
typedef s32 (*ColChkResetFunc)(PlayState*, Collider*);
typedef void (*ColChkApplyFunc)(PlayState*, CollisionCheckContext*, Collider*);

View file

@ -1,5 +1,5 @@
#pragma increment_block_number "gc-eu:216 gc-eu-mq:216 gc-jp:212 gc-jp-ce:212 gc-jp-mq:212 gc-us:212 gc-us-mq:212" \
"ntsc-1.0:208 ntsc-1.1:208 ntsc-1.2:208 pal-1.0:228 pal-1.1:228"
#pragma increment_block_number "gc-eu:216 gc-eu-mq:216 gc-jp:192 gc-jp-ce:192 gc-jp-mq:192 gc-us:192 gc-us-mq:192" \
"ntsc-1.0:208 ntsc-1.1:208 ntsc-1.2:208 pal-1.0:224 pal-1.1:224"
#include "global.h"
#include "ultra64.h"

View file

@ -1 +1,33 @@
#include "libaudio.h"
#include "synthInternals.h"
Acmd* alAuxBusPull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p) {
Acmd* ptr = p;
ALAuxBus* m = (ALAuxBus*)filter;
ALFilter** sources = m->sources;
s32 i;
// clear the output buffers here
aClearBuffer(ptr++, AL_AUX_L_OUT, outCount << 1);
aClearBuffer(ptr++, AL_AUX_R_OUT, outCount << 1);
for (i = 0; i < m->sourceCount; i++) {
ptr = sources[i]->handler(sources[i], outp, outCount, sampleOffset, ptr);
}
return ptr;
}
s32 alAuxBusParam(void* filter, s32 paramID, void* param) {
ALAuxBus* m = (ALAuxBus*)filter;
ALFilter** sources = m->sources;
switch (paramID) {
case AL_FILTER_ADD_SOURCE:
sources[m->sourceCount++] = (ALFilter*)param;
break;
default:
break;
}
return 0;
}

View file

@ -1 +1,11 @@
#include "libaudio.h"
void alCopy(void* src, void* dest, s32 len) {
s32 i;
u8* s = (u8*)src;
u8* d = (u8*)dest;
for (i = 0; i < len; i++) {
*d++ = *s++;
}
}

View file

@ -1 +1,264 @@
#include "libaudio.h"
#include "synthInternals.h"
// WARNING: THE FOLLOWING CONSTANT MUST BE KEPT IN SYNC WITH SCALING IN MICROCODE!!!
#define SCALE 16384
// the following arrays contain default parameters for a few hopefully useful effects.
#define ms *(((s32)(44.1f)) & ~7)
// clang-format off
static s32 SMALLROOM_PARAMS[2 + 3 * 8] = {
/* sections */ 3,
/* length */ 100 ms,
/* input output fbcoef ffcoef gain rate depth coef */
0, 54 ms, 9830, -9830, 0, 0, 0, 0,
19 ms, 38 ms, 3276, -3276, 0x3FFF, 0, 0, 0,
0, 60 ms, 5000, 0, 0, 0, 0, 0x5000
};
static s32 BIGROOM_PARAMS[2 + 4 * 8] = {
/* sections */ 4,
/* length */ 100 ms,
/* input output fbcoef ffcoef gain rate depth coef */
0, 66 ms, 9830, -9830, 0, 0, 0, 0,
22 ms, 54 ms, 3276, -3276, 0x3FFF, 0, 0, 0,
66 ms, 91 ms, 3276, -3276, 0x3FFF, 0, 0, 0,
0, 94 ms, 8000, 0, 0, 0, 0, 0x5000,
};
static s32 ECHO_PARAMS[2 + 1 * 8] = {
/* sections */ 1,
/* length */ 200 ms,
/* input output fbcoef ffcoef gain rate depth coef */
0, 179 ms, 12000, 0, 0x7FFF, 0, 0, 0,
};
static s32 CHORUS_PARAMS[2 + 1 * 8] = {
/* sections */ 1,
/* length */ 20 ms,
/* input output fbcoef ffcoef gain rate depth coef */
0, 5 ms, 0x4000, 0, 0x7FFF, 7600, 700, 0,
};
static s32 FLANGE_PARAMS[2 + 1 * 8] = {
/* sections */ 1,
/* length */ 20 ms,
/* input output fbcoef ffcoef gain rate depth coef */
0, 5 ms, 0, 0x5FFF, 0x7FFF, 380, 500, 0,
};
static s32 NULL_PARAMS[2 + 1 * 8] = {
/* sections */ 0,
/* length */ 0,
/* input output fbcoef ffcoef gain rate depth coef */
0, 0, 0, 0, 0, 0, 0, 0,
};
// clang-format on
void _init_lpfilter(ALLowPass* lp) {
s32 i;
s32 temp;
s16 fc;
f64 ffc;
f64 fcoef;
temp = lp->fc * SCALE;
fc = temp >> 15;
lp->fgain = SCALE - fc;
lp->first = true;
for (i = 0; i < 8; i++) {
lp->fcvec.fccoef[i] = 0;
}
lp->fcvec.fccoef[i++] = fc;
fcoef = ffc = (f64)fc / SCALE;
for (; i < 16; i++) {
fcoef *= ffc;
lp->fcvec.fccoef[i] = (s16)(s32)(fcoef * SCALE);
}
}
void alFxNew(ALFx* r, ALSynConfig* c, ALHeap* hp) {
u16 i;
u16 j;
u16 k;
s32* param = NULL;
ALFilter* f = &r->filter;
ALDelay* d;
alFilterNew(f, NULL, alFxParam, AL_FX);
f->handler = alFxPull;
r->paramHdl = (ALSetFXParam)alFxParamHdl;
switch (c->fxType) {
case AL_FX_SMALLROOM:
param = SMALLROOM_PARAMS;
break;
case AL_FX_BIGROOM:
param = BIGROOM_PARAMS;
break;
case AL_FX_ECHO:
param = ECHO_PARAMS;
break;
case AL_FX_CHORUS:
param = CHORUS_PARAMS;
break;
case AL_FX_FLANGE:
param = FLANGE_PARAMS;
break;
case AL_FX_CUSTOM:
param = c->params;
break;
default:
param = NULL_PARAMS;
break;
}
j = 0;
r->section_count = param[j++];
r->length = param[j++];
r->delay = alHeapAlloc(hp, r->section_count, sizeof(ALDelay));
r->base = alHeapAlloc(hp, r->length, sizeof(s16));
r->input = r->base;
for (k = 0; k < r->length; k++) {
r->base[k] = 0;
}
for (i = 0; i < r->section_count; i++) {
d = &r->delay[i];
d->input = param[j++];
d->output = param[j++];
d->fbcoef = param[j++];
d->ffcoef = param[j++];
d->gain = param[j++];
if (param[j] != 0) {
#define RANGE 2.0
d->rsinc = ((((f32)param[j++]) / 1000.0f) * RANGE) / c->outputRate;
// the following constant is derived from:
//
// ratio = 2^(cents/1200)
//
// and therefore for hundredths of a cent
// x
// ln(ratio) = ---------------
// (120,000)/ln(2)
// where
// 120,000/ln(2) = 173123.40...
#define CONVERT 173123.404906676
d->rsgain = (((f32)param[j++]) / CONVERT) * (d->output - d->input);
d->rsval = 1.0f;
d->rsdelta = 0.0f;
d->rs = alHeapAlloc(hp, 1, sizeof(ALResampler));
d->rs->state = alHeapAlloc(hp, 1, sizeof(RESAMPLE_STATE));
d->rs->delta = 0.0f;
d->rs->first = true;
} else {
d->rs = NULL;
j++;
j++;
}
if (param[j] != 0) {
d->lp = alHeapAlloc(hp, 1, sizeof(ALLowPass));
d->lp->fstate = alHeapAlloc(hp, 1, sizeof(POLEF_STATE));
d->lp->fc = param[j++];
_init_lpfilter(d->lp);
} else {
d->lp = NULL;
j++;
}
}
}
void alEnvmixerNew(ALEnvMixer* e, ALHeap* hp) {
alFilterNew(&e->filter, alEnvmixerPull, alEnvmixerParam, AL_ENVMIX);
e->state = alHeapAlloc(hp, 1, sizeof(ENVMIX_STATE));
e->first = true;
e->motion = AL_STOPPED;
e->volume = 1;
e->ltgt = 1;
e->rtgt = 1;
e->cvolL = 1;
e->cvolR = 1;
e->dryamt = 0;
e->wetamt = 0;
e->lratm = 1;
e->lratl = 0;
e->lratm = 1;
e->lratl = 0;
e->delta = 0;
e->segEnd = 0;
e->pan = 0;
e->ctrlList = NULL;
e->ctrlTail = NULL;
e->sources = NULL;
}
void alLoadNew(ALLoadFilter* f, ALDMANew dmaNew, ALHeap* hp) {
s32 i;
// init filter superclass
alFilterNew(&f->filter, alAdpcmPull, alLoadParam, AL_ADPCM);
f->state = alHeapAlloc(hp, 1, sizeof(ADPCM_STATE));
f->lstate = alHeapAlloc(hp, 1, sizeof(ADPCM_STATE));
f->dma = dmaNew(&f->dmaState);
// init the adpcm state
f->lastsam = 0;
f->first = true;
f->memin = 0;
}
void alResampleNew(ALResampler* r, ALHeap* hp) {
alFilterNew(&r->filter, alResamplePull, alResampleParam, AL_RESAMPLE);
// Init resampler state
r->state = alHeapAlloc(hp, 1, sizeof(RESAMPLE_STATE));
r->delta = 0.0f;
r->first = true;
r->motion = AL_STOPPED;
r->ratio = 1.0f;
r->upitch = 0;
r->ctrlList = NULL;
r->ctrlTail = NULL;
// state in the ucode is initialized by the A_INIT flag
}
void alAuxBusNew(ALAuxBus* m, void* sources, s32 maxSources) {
alFilterNew(&m->filter, alAuxBusPull, alAuxBusParam, AL_AUXBUS);
m->sourceCount = 0;
m->maxSources = maxSources;
m->sources = (ALFilter**)sources;
}
void alMainBusNew(ALMainBus* m, void* sources, s32 maxSources) {
alFilterNew(&m->filter, alMainBusPull, alMainBusParam, AL_MAINBUS);
m->sourceCount = 0;
m->maxSources = maxSources;
m->sources = (ALFilter**)sources;
}
void alSaveNew(ALSave* f) {
// init filter superclass
alFilterNew(&f->filter, alSavePull, alSaveParam, AL_SAVE);
// init the save state, which is a virtual dram address
f->dramout = 0;
f->first = true;
}

View file

@ -1 +1,420 @@
#include "libaudio.h"
#include "synthInternals.h"
#include "libc/math.h"
#include "ultra64/convert.h"
#define EQPOWER_LENGTH 128
static s16 eqpower[EQPOWER_LENGTH] = {
32767, 32764, 32757, 32744, 32727, 32704, 32677, 32644, 32607, 32564, 32517, 32464, 32407, 32344, 32277, 32205,
32127, 32045, 31958, 31866, 31770, 31668, 31561, 31450, 31334, 31213, 31087, 30957, 30822, 30682, 30537, 30388,
30234, 30075, 29912, 29744, 29572, 29395, 29214, 29028, 28838, 28643, 28444, 28241, 28033, 27821, 27605, 27385,
27160, 26931, 26698, 26461, 26220, 25975, 25726, 25473, 25216, 24956, 24691, 24423, 24151, 23875, 23596, 23313,
23026, 22736, 22442, 22145, 21845, 21541, 21234, 20924, 20610, 20294, 19974, 19651, 19325, 18997, 18665, 18331,
17993, 17653, 17310, 16965, 16617, 16266, 15913, 15558, 15200, 14840, 14477, 14113, 13746, 13377, 13006, 12633,
12258, 11881, 11503, 11122, 10740, 10357, 9971, 9584, 9196, 8806, 8415, 8023, 7630, 7235, 6839, 6442,
6044, 5646, 5246, 4845, 4444, 4042, 3640, 3237, 2833, 2429, 2025, 1620, 1216, 810, 405, 0
};
static Acmd* _pullSubFrame(void* filter, s16* inp, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p);
static s16 _getRate(f64 vol, f64 tgt, s32 count, u16* ratel);
static f32 _getVol(f32 ivol, s32 samples, s16 ratem, u16 ratel);
Acmd* alEnvmixerPull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p) {
Acmd* ptr = p;
ALEnvMixer* e = (ALEnvMixer*)filter;
s16 inp;
s32 lastOffset;
s32 thisOffset = sampleOffset;
s32 samples;
s16 loutp = 0;
s32 fVol;
ALParam* thisParam;
// Force the input to be the resampler output
inp = AL_RESAMPLER_OUT;
while (e->ctrlList != NULL) {
lastOffset = thisOffset;
thisOffset = e->ctrlList->delta;
samples = thisOffset - lastOffset;
if (samples > outCount) {
break;
}
switch (e->ctrlList->type) {
case AL_FILTER_START_VOICE_ALT: {
ALStartParamAlt* param = (ALStartParamAlt*)e->ctrlList;
ALFilter* f = &e->filter;
s32 tmp;
if (param->unity != 0) {
(*e->filter.setParam)(&e->filter, AL_FILTER_SET_UNITY_PITCH, 0);
}
(*e->filter.setParam)(&e->filter, AL_FILTER_SET_WAVETABLE, param->wave);
(*e->filter.setParam)(&e->filter, AL_FILTER_START, 0);
e->first = true;
e->delta = 0;
e->segEnd = param->samples;
tmp = ((s32)param->volume * (s32)param->volume) >> 15;
e->volume = (s16)tmp;
e->pan = param->pan;
e->dryamt = eqpower[param->fxMix];
e->wetamt = eqpower[EQPOWER_LENGTH - param->fxMix - 1];
if (param->samples != 0) {
e->cvolL = 1;
e->cvolR = 1;
} else {
// Attack time is zero. Simply set the volume. We don't want an attack segment.
e->cvolL = (e->volume * eqpower[e->pan]) >> 15;
e->cvolR = (e->volume * eqpower[EQPOWER_LENGTH - e->pan - 1]) >> 15;
}
if (f->source != NULL) {
union {
f32 f;
s32 i;
} data;
data.f = param->pitch;
(*f->source->setParam)(f->source, AL_FILTER_SET_PITCH, (void*)data.i);
}
} break;
case AL_FILTER_SET_FXAMT:
case AL_FILTER_SET_PAN:
case AL_FILTER_SET_VOLUME:
ptr = _pullSubFrame(e, &inp, &loutp, samples, sampleOffset, ptr);
if (e->delta >= e->segEnd) {
// We should have reached our target, calculate target in case e->segEnd was 0
e->ltgt = (e->volume * eqpower[e->pan]) >> 15;
e->rtgt = (e->volume * eqpower[EQPOWER_LENGTH - e->pan - 1]) >> 15;
e->delta = e->segEnd; // To prevent overflow
e->cvolL = e->ltgt;
e->cvolR = e->rtgt;
} else {
// Estimate the current volume
e->cvolL = _getVol(e->cvolL, e->delta, e->lratm, e->lratl);
e->cvolR = _getVol(e->cvolR, e->delta, e->rratm, e->rratl);
}
// We can't have volume of zero, because the envelope would never go anywhere from there
if (e->cvolL == 0) {
e->cvolL = 1;
}
if (e->cvolR == 0) {
e->cvolR = 1;
}
if (e->ctrlList->type == AL_FILTER_SET_PAN) {
// This should result in a change to the current segment rate and target
e->pan = (s16)e->ctrlList->data.i;
}
if (e->ctrlList->type == AL_FILTER_SET_VOLUME) {
// Switching to a new segment
e->delta = 0;
// Map volume non-linearly to give something close to loudness
fVol = (e->ctrlList->data.i);
fVol = (fVol * fVol) >> 15;
e->volume = (s16)fVol;
e->segEnd = e->ctrlList->moredata.i;
}
if (e->ctrlList->type == AL_FILTER_SET_FXAMT) {
e->dryamt = eqpower[e->ctrlList->data.i];
e->wetamt = eqpower[EQPOWER_LENGTH - e->ctrlList->data.i - 1];
}
// Force a volume update
e->first = true;
break;
case AL_FILTER_START_VOICE: {
ALStartParam* p = (ALStartParam*)e->ctrlList;
// Changing to PLAYING (since the previous state was persumable STOPPED, we'll just bump the output
// pointer rather than pull a subframe of zeros).
if (p->unity != 0) {
(*e->filter.setParam)(&e->filter, AL_FILTER_SET_UNITY_PITCH, 0);
}
(*e->filter.setParam)(&e->filter, AL_FILTER_SET_WAVETABLE, p->wave);
(*e->filter.setParam)(&e->filter, AL_FILTER_START, 0);
} break;
case AL_FILTER_STOP_VOICE: {
// Changing to STOPPED and reset the filter
ptr = _pullSubFrame(e, &inp, &loutp, samples, sampleOffset, ptr);
(*e->filter.setParam)(&e->filter, AL_FILTER_RESET, 0);
} break;
case AL_FILTER_FREE_VOICE: {
ALSynth* drvr = &alGlobals->drvr;
ALFreeParam* param = (ALFreeParam*)e->ctrlList;
param->pvoice->offset = 0;
_freePVoice(drvr, param->pvoice);
} break;
default:
// Pull the reuired number of samples and then pass the message on down the chain
ptr = _pullSubFrame(e, &inp, &loutp, samples, sampleOffset, ptr);
(*e->filter.setParam)(&e->filter, e->ctrlList->type, (void*)e->ctrlList->data.i);
break;
}
loutp += samples << 1;
outCount -= samples;
// put the param record back on the free list
thisParam = e->ctrlList;
e->ctrlList = e->ctrlList->next;
if (e->ctrlList == NULL) {
e->ctrlTail = NULL;
}
__freeParam(thisParam);
}
ptr = _pullSubFrame(e, &inp, &loutp, outCount, sampleOffset, ptr);
// Prevent overflow in e->delta
if (e->delta > e->segEnd) {
e->delta = e->segEnd;
}
return ptr;
}
s32 alEnvmixerParam(void* filter, s32 paramID, void* param) {
ALFilter* f = (ALFilter*)filter;
ALEnvMixer* e = (ALEnvMixer*)filter;
switch (paramID) {
case AL_FILTER_ADD_UPDATE:
if (e->ctrlTail != NULL) {
e->ctrlTail->next = (ALParam*)param;
} else {
e->ctrlList = (ALParam*)param;
}
e->ctrlTail = (ALParam*)param;
break;
case AL_FILTER_RESET:
e->first = true;
e->motion = AL_STOPPED;
e->volume = 1;
if (f->source != NULL) {
(*f->source->setParam)(f->source, AL_FILTER_RESET, param);
}
break;
case AL_FILTER_START:
e->motion = AL_PLAYING;
if (f->source != NULL) {
(*f->source->setParam)(f->source, AL_FILTER_START, param);
}
break;
case AL_FILTER_SET_SOURCE:
f->source = (ALFilter*)param;
break;
default:
if (f->source != NULL) {
(*f->source->setParam)(f->source, paramID, param);
}
break;
}
return 0;
}
static Acmd* _pullSubFrame(void* filter, s16* inp, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p) {
Acmd* ptr = p;
ALEnvMixer* e = (ALEnvMixer*)filter;
ALFilter* source = e->filter.source;
// filter must be playing and request non-zero output samples to pull.
if (e->motion != AL_PLAYING || !outCount) {
return ptr;
}
// ask all filters upstream from us to build their command lists.
ptr = (*source->handler)(source, inp, outCount, sampleOffset, p);
// construct our portion of the command list
aSetBuffer(ptr++, A_MAIN, *inp, AL_MAIN_L_OUT + *outp, outCount << 1);
aSetBuffer(ptr++, A_AUX, AL_MAIN_R_OUT + *outp, AL_AUX_L_OUT + *outp, AL_AUX_R_OUT + *outp);
if (e->first) {
e->first = false;
// Calculate derived parameters
e->ltgt = (e->volume * eqpower[e->pan]) >> 15;
e->lratm = _getRate((f64)e->cvolL, (f64)e->ltgt, e->segEnd, &e->lratl);
e->rtgt = (e->volume * eqpower[EQPOWER_LENGTH - e->pan - 1]) >> 15;
e->rratm = _getRate((f64)e->cvolR, (f64)e->rtgt, e->segEnd, &e->rratl);
aSetVolume(ptr++, A_LEFT | A_VOL, e->cvolL, 0, 0);
aSetVolume(ptr++, A_RIGHT | A_VOL, e->cvolR, 0, 0);
aSetVolume(ptr++, A_LEFT | A_RATE, e->ltgt, e->lratm, e->lratl);
aSetVolume(ptr++, A_RIGHT | A_RATE, e->rtgt, e->rratm, e->rratl);
aSetVolume(ptr++, A_AUX, e->dryamt, 0, e->wetamt);
aEnvMixer(ptr++, A_INIT | A_AUX, osVirtualToPhysical(e->state));
} else
aEnvMixer(ptr++, A_CONTINUE | A_AUX, osVirtualToPhysical(e->state));
// bump the input buffer pointer
*inp += outCount << 1;
e->delta += outCount;
return ptr;
}
f64 _frexpf(f64 value, s32* eptr) {
f64 absvalue;
*eptr = 0;
if (value == 0.0) {
// nothing to do for zero
return value;
}
absvalue = (value > 0.0) ? value : -value;
for (; absvalue >= 1.0; absvalue *= 0.5) {
(*eptr)++;
}
for (; absvalue < 0.5; absvalue += absvalue) {
(*eptr)--;
}
return (value > 0.0 ? absvalue : -absvalue);
}
f64 _ldexpf(f64 in, s32 ex) {
s32 exp;
if (ex != 0) {
exp = 1 << ex;
in *= (f64)exp;
}
return in;
}
/**
* This function determines how to go from the current volume level (vol) to the target volume level (tgt) in some
* number of steps (count). Two values are returned that are used as multipliers to incrementally scale the volume.
* Some tricky math is used and is explained below.
* RWW 28jun95
*/
static s16 _getRate(f64 vol, f64 tgt, s32 count, u16* ratel) {
s16 s;
f64 invn = 1.0 / count;
f64 eps;
f64 a;
f64 fs;
f64 mant;
s32 i_invn;
s32 ex;
s32 indx;
if (count == 0) {
if (tgt >= vol) {
*ratel = 0xFFFF;
return 0x7FFF;
} else {
*ratel = 0;
return 0;
}
}
if (tgt < 1.0) {
tgt = 1.0;
}
if (vol <= 0.0) {
vol = 1.0; // zero and neg values not allowed
}
#define NBITS 3
#define NPOS (1 << NBITS)
#define NFRACBITS 30
#define M_LN2 0.69314718055994530942
// rww's parametric pow()
// Goal: compute a = (tgt/vol)^(1/count)
//
// Approach:
// (tgt/vol)^(1/count) = ((tgt/vol)^(1/2^30))^(2^30*1/count)
//
// (tgt/vol)^(1/2^30) ~= 1 + eps
//
// where
//
// eps ~= ln(tgt/vol)/2^30
//
// ln(tgt/vol) = ln2(tgt/vol) * ln(2)
//
// ln2(tgt/vol) = fp_exponent( tgt/vol ) + ln2( fp_mantissa( tgt/vol ) )
//
// fp_mantissa() and fp_exponent() are calculated via tricky bit manipulations of
// the floating point number. ln2() is approximated by a look up table.
//
// Note that this final (1+eps) value needs to be raised to the 2^30/count power. This
// is done by operating on the binary representaion of this number in the final while loop.
//
// Enjoy!
{
f64 logtab[] = { -0.912537, -0.752072, -0.607683, -0.476438, -0.356144, -0.245112, -0.142019, -0.045804 };
i_invn = (s32)_ldexpf(invn, NFRACBITS);
mant = _frexpf(tgt / vol, &ex);
indx = (s32)_ldexpf(mant, NBITS + 1); // NPOS <= indx < 2*NPOS
eps = (logtab[indx - NPOS] + ex) * M_LN2;
eps /= _ldexpf(1, NFRACBITS); // eps / 2^NFRACBITS
fs = 1.0 + eps;
a = 1.0;
while (i_invn != 0) {
if (i_invn & 1) {
a = a * fs;
}
fs *= fs;
i_invn >>= 1;
}
}
a *= a;
a *= a;
a *= a;
s = (s16)a;
*ratel = (s16)(0xFFFF * (a - (f32)s));
return (s16)a;
}
static f32 _getVol(f32 ivol, s32 samples, s16 ratem, u16 ratel) {
f32 r;
f32 a;
s32 i;
// Rate values are actually rate^8
samples >>= 3;
if (samples == 0) {
return ivol;
}
r = ((f32)(ratem << 16) + (f32)ratel) / 65536;
a = 1.0f;
for (i = 0; i < 32; i++) {
if (samples & 1) {
a *= r;
}
samples >>= 1;
if (samples == 0) {
break;
}
r *= r;
}
ivol *= a;
return ivol;
}

View file

@ -1 +1,11 @@
#include "libaudio.h"
#include "synthInternals.h"
void alFilterNew(ALFilter* f, ALCmdHandler h, ALSetParam s, s32 type) {
f->source = NULL;
f->handler = h;
f->setParam = s;
f->inp = 0;
f->outp = 0;
f->type = type;
}

View file

@ -1 +1,15 @@
#include "libaudio.h"
#include "synthInternals.h"
void* alHeapDBAlloc(u8* file, s32 line, ALHeap* hp, s32 num, s32 size) {
s32 bytes;
u8* ptr = NULL;
bytes = (num * size + AL_CACHE_ALIGN) & ~AL_CACHE_ALIGN;
if (hp->cur + bytes <= hp->base + hp->len) {
ptr = hp->cur;
hp->cur += bytes;
}
return ptr;
}

View file

@ -0,0 +1,842 @@
#ifndef __LIB_AUDIO__
#define __LIB_AUDIO__
#include "libc/stdbool.h"
#include "libc/stddef.h"
#include "libc/stdint.h"
#include "ultra64/ultratypes.h"
#include "libaudio_abi.h"
/***********************************************************************
* misc defines
***********************************************************************/
#define AL_FX_BUFFER_SIZE 8192
#define AL_FRAME_INIT -1
#define AL_USEC_PER_FRAME 16000
#define AL_MAX_PRIORITY 127
#define AL_GAIN_CHANGE_TIME 1000
typedef s32 ALMicroTime;
typedef u8 ALPan;
#define AL_PAN_CENTER 64
#define AL_PAN_LEFT 0
#define AL_PAN_RIGHT 127
#define AL_VOL_FULL 127
#define AL_KEY_MIN 0
#define AL_KEY_MAX 127
#define AL_DEFAULT_FXMIX 0
#define AL_SUSTAIN 63
/***********************************************************************
* Audio Library global routines
***********************************************************************/
typedef struct ALLink_s {
struct ALLink_s* next;
struct ALLink_s* prev;
} ALLink;
void alUnlink(ALLink* ln);
void alLink(ALLink* ln, ALLink* to);
typedef s32 (*ALDMAproc)(s32 addr, s32 len, void* state);
typedef ALDMAproc (*ALDMANew)(void* state);
void alCopy(void* src, void* dest, s32 len);
typedef struct {
u8* base;
u8* cur;
s32 len;
s32 count;
} ALHeap;
#define AL_HEAP_DEBUG 1
#define AL_HEAP_MAGIC 0x20736A73 // ' sjs'
#define AL_HEAP_INIT 0
void alHeapInit(ALHeap* hp, u8* base, s32 len);
void* alHeapDBAlloc(u8* file, s32 line, ALHeap* hp, s32 num, s32 size);
s32 alHeapCheck(ALHeap* hp);
#define alHeapAlloc(hp, elem ,size) alHeapDBAlloc(0, 0,(hp),(elem),(size))
/***********************************************************************
* FX Stuff
***********************************************************************/
#define AL_FX_NONE 0
#define AL_FX_SMALLROOM 1
#define AL_FX_BIGROOM 2
#define AL_FX_CHORUS 3
#define AL_FX_FLANGE 4
#define AL_FX_ECHO 5
#define AL_FX_CUSTOM 6
typedef u8 ALFxId;
typedef void* ALFxRef;
/***********************************************************************
* data structures for sound banks
***********************************************************************/
#define AL_BANK_VERSION 0x4231 // 'B1'
// Possible wavetable types
enum {
AL_ADPCM_WAVE = 0,
AL_RAW16_WAVE
};
typedef struct {
s32 order;
s32 npredictors;
s16 book[1]; // Actually variable size. Must be 8-byte aligned
} ALADPCMBook;
typedef struct {
u32 start;
u32 end;
u32 count;
ADPCM_STATE state;
} ALADPCMloop;
typedef struct {
u32 start;
u32 end;
u32 count;
} ALRawLoop;
typedef struct {
ALMicroTime attackTime;
ALMicroTime decayTime;
ALMicroTime releaseTime;
u8 attackVolume;
u8 decayVolume;
} ALEnvelope;
typedef struct {
u8 velocityMin;
u8 velocityMax;
u8 keyMin;
u8 keyMax;
u8 keyBase;
s8 detune;
} ALKeyMap;
typedef struct {
ALADPCMloop* loop;
ALADPCMBook* book;
} ALADPCMWaveInfo;
typedef struct {
ALRawLoop* loop;
} ALRAWWaveInfo;
typedef struct ALWaveTable_s {
u8* base; // ptr to start of wave data
s32 len; // length of data in bytes
u8 type; // compression type
u8 flags; // offset/address flags
union {
ALADPCMWaveInfo adpcmWave;
ALRAWWaveInfo rawWave;
} waveInfo;
} ALWaveTable;
typedef struct ALSound_s {
ALEnvelope* envelope;
ALKeyMap* keyMap;
ALWaveTable* wavetable; // offset to wavetable struct
ALPan samplePan;
u8 sampleVolume;
u8 flags;
} ALSound;
typedef struct {
u8 volume; // overall volume for this instrument
ALPan pan; // 0 = hard left, 127 = hard right
u8 priority; // voice priority for this instrument
u8 flags;
u8 tremType; // the type of tremelo osc. to use
u8 tremRate; // the rate of the tremelo osc.
u8 tremDepth; // the depth of the tremelo osc
u8 tremDelay; // the delay for the tremelo osc
u8 vibType; // the type of tremelo osc. to use
u8 vibRate; // the rate of the tremelo osc.
u8 vibDepth; // the depth of the tremelo osc
u8 vibDelay; // the delay for the tremelo osc
s16 bendRange; // pitch bend range in cents
s16 soundCount; // number of sounds in this array
ALSound* soundArray[1];
} ALInstrument;
typedef struct ALBank_s {
s16 instCount; // number of programs in this bank
u8 flags;
u8 pad;
s32 sampleRate; // e.g. 44100, 22050, etc...
ALInstrument* percussion; // default percussion for GM
ALInstrument* instArray[1]; // ARRAY of instruments
} ALBank;
typedef struct { // Note: sizeof won't be correct
s16 revision; // format revision of this file
s16 bankCount; // number of banks
ALBank* bankArray[1]; // ARRAY of bank offsets
} ALBankFile;
void alBnkfNew(ALBankFile* f, u8* table);
/***********************************************************************
* Sequence Files
***********************************************************************/
#define AL_SEQBANK_VERSION 'S1'
typedef struct {
u8* offset;
s32 len;
} ALSeqData;
typedef struct { // Note: sizeof won't be correct
s16 revision; // format revision of this file
s16 seqCount; // number of sequences
ALSeqData seqArray[1]; // ARRAY of sequence info
} ALSeqFile;
void alSeqFileNew(ALSeqFile* f, u8* base);
/***********************************************************************
* Synthesis driver stuff
***********************************************************************/
typedef ALMicroTime (*ALVoiceHandler)(void*);
typedef struct {
s32 maxVVoices; // obsolete
s32 maxPVoices;
s32 maxUpdates;
s32 maxFXbusses;
void* dmaproc;
ALHeap* heap;
s32 outputRate; // output sample rate
ALFxId fxType;
s32* params;
} ALSynConfig;
typedef struct ALPlayer_s {
struct ALPlayer_s* next;
void* clientData; // storage for client callback
ALVoiceHandler handler; // voice handler for player
ALMicroTime callTime; // usec requested callback
s32 samplesLeft; // usec remaining to callback
} ALPlayer;
typedef struct ALVoice_s {
ALLink node;
struct PVoice_s* pvoice;
ALWaveTable* table;
void* clientPrivate;
s16 state;
s16 priority;
s16 fxBus;
s16 unityPitch;
} ALVoice;
typedef struct ALVoiceConfig_s {
s16 priority; // voice priority
s16 fxBus; // bus assignment
u8 unityPitch; // unity pitch flag
} ALVoiceConfig;
typedef struct {
ALPlayer* head; // client list head
ALLink pFreeList; // list of free physical voices
ALLink pAllocList; // list of allocated physical voices
ALLink pLameList; // list of voices ready to be freed
s32 paramSamples;
s32 curSamples; // samples from start of game
ALDMANew dma;
ALHeap* heap;
struct ALParam_s* paramList;
struct ALMainBus_s* mainBus;
struct ALAuxBus_s* auxBus; // ptr to array of aux bus structs
struct ALFilter_s* outputFilter; // last filter in the filter chain
s32 numPVoices;
s32 maxAuxBusses;
s32 outputRate; // output sample rate
s32 maxOutSamples; // Maximum samples rsp can generate at one time at output rate
} ALSynth;
void alSynNew(ALSynth* drvr, ALSynConfig* c);
void alSynDelete(ALSynth* drvr);
void alSynAddPlayer(ALSynth* s, ALPlayer* client);
void alSynRemovePlayer(ALSynth* s, ALPlayer* client);
s32 alSynAllocVoice(ALSynth* s, ALVoice* v, ALVoiceConfig* vc);
void alSynFreeVoice(ALSynth* s, ALVoice* voice);
void alSynStartVoice(ALSynth* s, ALVoice* voice, ALWaveTable* w);
void alSynStartVoiceParams(ALSynth* s, ALVoice* voice, ALWaveTable* w, f32 pitch, s16 vol, ALPan pan, u8 fxmix, ALMicroTime t);
void alSynStopVoice(ALSynth* s, ALVoice* voice);
void alSynSetVol(ALSynth* s, ALVoice* v, s16 vol, ALMicroTime delta);
void alSynSetPitch(ALSynth* s, ALVoice* voice, f32 ratio);
void alSynSetPan(ALSynth* s, ALVoice* voice, ALPan pan);
void alSynSetFXMix(ALSynth* s, ALVoice* voice, u8 fxmix);
void alSynSetPriority(ALSynth* s, ALVoice* voice, s16 priority);
s16 alSynGetPriority(ALSynth* s, ALVoice* voice);
ALFxRef* alSynAllocFX(ALSynth* s, s16 bus, ALSynConfig* c, ALHeap* hp);
ALFxRef alSynGetFXRef(ALSynth* s, s16 bus, s16 index);
void alSynFreeFX(ALSynth* s, ALFxRef* fx);
void alSynSetFXParam(ALSynth* s, ALFxRef fx, s16 paramID, void* param);
/***********************************************************************
* Audio Library (AL) stuff
***********************************************************************/
typedef struct {
ALSynth drvr;
} ALGlobals;
extern ALGlobals* alGlobals;
void alInit(ALGlobals* g, ALSynConfig* c);
void alClose(ALGlobals* glob);
Acmd* alAudioFrame(Acmd* cmdList, s32* cmdLen, s16* outBuf, s32 outLen);
/***********************************************************************
* Sequence Player stuff
***********************************************************************/
/**
* Play states
*/
#define AL_STOPPED 0
#define AL_PLAYING 1
#define AL_STOPPING 2
#define AL_DEFAULT_PRIORITY 5
#define AL_DEFAULT_VOICE 0
#define AL_MAX_CHANNELS 16
/**
* Audio Library event type definitions
*/
enum ALMsg {
AL_SEQ_REF_EVT, // Reference to a pending event in the sequence.
AL_SEQ_MIDI_EVT,
AL_SEQP_MIDI_EVT,
AL_TEMPO_EVT,
AL_SEQ_END_EVT,
AL_NOTE_END_EVT,
AL_SEQP_ENV_EVT,
AL_SEQP_META_EVT,
AL_SEQP_PROG_EVT,
AL_SEQP_API_EVT,
AL_SEQP_VOL_EVT,
AL_SEQP_LOOP_EVT,
AL_SEQP_PRIORITY_EVT,
AL_SEQP_SEQ_EVT,
AL_SEQP_BANK_EVT,
AL_SEQP_PLAY_EVT,
AL_SEQP_STOP_EVT,
AL_SEQP_STOPPING_EVT,
AL_TRACK_END,
AL_CSP_LOOPSTART,
AL_CSP_LOOPEND,
AL_CSP_NOTEOFF_EVT,
AL_TREM_OSC_EVT,
AL_VIB_OSC_EVT
};
/**
* Midi event definitions
*/
#define AL_EVTQ_END 0x7FFFFFFF
enum AL_MIDIstatus {
// For distinguishing channel number from status
AL_MIDI_ChannelMask = 0x0F,
AL_MIDI_StatusMask = 0xF0,
// Channel voice messages
AL_MIDI_ChannelVoice = 0x80,
AL_MIDI_NoteOff = 0x80,
AL_MIDI_NoteOn = 0x90,
AL_MIDI_PolyKeyPressure = 0xA0,
AL_MIDI_ControlChange = 0xB0,
AL_MIDI_ChannelModeSelect = 0xB0,
AL_MIDI_ProgramChange = 0xC0,
AL_MIDI_ChannelPressure = 0xD0,
AL_MIDI_PitchBendChange = 0xE0,
// System messages
AL_MIDI_SysEx = 0xF0, // System Exclusive
// System common
AL_MIDI_SystemCommon = 0xF1,
AL_MIDI_TimeCodeQuarterFrame = 0xF1,
AL_MIDI_SongPositionPointer = 0xF2,
AL_MIDI_SongSelect = 0xF3,
AL_MIDI_Undefined1 = 0xF4,
AL_MIDI_Undefined2 = 0xF5,
AL_MIDI_TuneRequest = 0xF6,
AL_MIDI_EOX = 0xF7, // End of System Exclusive
// System real time
AL_MIDI_SystemRealTime = 0xF8,
AL_MIDI_TimingClock = 0xF8,
AL_MIDI_Undefined3 = 0xF9,
AL_MIDI_Start = 0xFA,
AL_MIDI_Continue = 0xFB,
AL_MIDI_Stop = 0xFC,
AL_MIDI_Undefined4 = 0xFD,
AL_MIDI_ActiveSensing = 0xFE,
AL_MIDI_SystemReset = 0xFF,
AL_MIDI_Meta = 0xFF // MIDI Files only
};
enum AL_MIDIctrl {
AL_MIDI_VOLUME_CTRL = 0x07,
AL_MIDI_PAN_CTRL = 0x0A,
AL_MIDI_PRIORITY_CTRL = 0x10, // use general purpose controller for priority
AL_MIDI_FX_CTRL_0 = 0x14,
AL_MIDI_FX_CTRL_1 = 0x15,
AL_MIDI_FX_CTRL_2 = 0x16,
AL_MIDI_FX_CTRL_3 = 0x17,
AL_MIDI_FX_CTRL_4 = 0x18,
AL_MIDI_FX_CTRL_5 = 0x19,
AL_MIDI_FX_CTRL_6 = 0x1A,
AL_MIDI_FX_CTRL_7 = 0x1B,
AL_MIDI_FX_CTRL_8 = 0x1C,
AL_MIDI_FX_CTRL_9 = 0x1D,
AL_MIDI_SUSTAIN_CTRL = 0x40,
AL_MIDI_FX1_CTRL = 0x5B,
AL_MIDI_FX3_CTRL = 0x5D
};
enum AL_MIDImeta {
AL_MIDI_META_TEMPO = 0x51,
AL_MIDI_META_EOT = 0x2F
};
#define AL_CMIDI_BLOCK_CODE 0xFE
#define AL_CMIDI_LOOPSTART_CODE 0x2E
#define AL_CMIDI_LOOPEND_CODE 0x2D
#define AL_CMIDI_CNTRL_LOOPSTART 102
#define AL_CMIDI_CNTRL_LOOPEND 103
#define AL_CMIDI_CNTRL_LOOPCOUNT_SM 104
#define AL_CMIDI_CNTRL_LOOPCOUNT_BIG 105
typedef struct {
u8* curPtr; // ptr to the next event
s32 lastTicks; // sequence clock ticks (used by alSeqSetLoc)
s32 curTicks; // sequence clock ticks of next event (used by loop end test)
s16 lastStatus; // the last status msg
} ALSeqMarker;
typedef struct {
s32 ticks; // MIDI, Tempo and End events must start with ticks
u8 status;
u8 byte1;
u8 byte2;
u32 duration;
} ALMIDIEvent;
typedef struct {
s32 ticks;
u8 status;
u8 type;
u8 len;
u8 byte1;
u8 byte2;
u8 byte3;
} ALTempoEvent;
typedef struct {
s32 ticks;
u8 status;
u8 type;
u8 len;
} ALEndEvent;
typedef struct {
struct ALVoice_s* voice;
} ALNoteEvent;
typedef struct {
struct ALVoice_s* voice;
ALMicroTime delta;
u8 vol;
} ALVolumeEvent;
typedef struct {
s16 vol;
} ALSeqpVolEvent;
typedef struct {
ALSeqMarker* start;
ALSeqMarker* end;
s32 count;
} ALSeqpLoopEvent;
typedef struct {
u8 chan;
u8 priority;
} ALSeqpPriorityEvent;
typedef struct {
void* seq; // pointer to a seq (could be an ALSeq or an ALCSeq).
} ALSeqpSeqEvent;
typedef struct {
ALBank* bank;
} ALSeqpBankEvent;
typedef struct {
struct ALVoiceState_s* vs;
void* oscState;
u8 chan;
} ALOscEvent;
typedef struct {
s16 type;
union {
ALMIDIEvent midi;
ALTempoEvent tempo;
ALEndEvent end;
ALNoteEvent note;
ALVolumeEvent vol;
ALSeqpLoopEvent loop;
ALSeqpVolEvent spvol;
ALSeqpPriorityEvent sppriority;
ALSeqpSeqEvent spseq;
ALSeqpBankEvent spbank;
ALOscEvent osc;
} msg;
} ALEvent;
typedef struct {
ALLink node;
ALMicroTime delta;
ALEvent evt;
} ALEventListItem;
typedef struct {
ALLink freeList;
ALLink allocList;
s32 eventCount;
} ALEventQueue;
void alEvtqNew(ALEventQueue* evtq, ALEventListItem* items, s32 itemCount);
ALMicroTime alEvtqNextEvent(ALEventQueue* evtq, ALEvent* evt);
void alEvtqPostEvent(ALEventQueue* evtq, ALEvent* evt, ALMicroTime delta);
void alEvtqFlush(ALEventQueue* evtq);
void alEvtqFlushType(ALEventQueue* evtq, s16 type);
#define AL_PHASE_ATTACK 0
#define AL_PHASE_NOTEON 0
#define AL_PHASE_DECAY 1
#define AL_PHASE_SUSTAIN 2
#define AL_PHASE_RELEASE 3
#define AL_PHASE_SUSTREL 4
typedef struct ALVoiceState_s {
struct ALVoiceState_s* next; // MUST be first
ALVoice voice;
ALSound* sound;
ALMicroTime envEndTime; // time of envelope segment end
f32 pitch; // currect pitch ratio
f32 vibrato; // current value of the vibrato
u8 envGain; // current envelope gain
u8 channel; // channel assignment
u8 key; // note on key number
u8 velocity; // note on velocity
u8 envPhase; // what envelope phase
u8 phase;
u8 tremelo; // current value of the tremelo
u8 flags; // bit 0 tremelo flag, bit 1 vibrato flag
} ALVoiceState;
typedef struct {
ALInstrument* instrument; // instrument assigned to this chan
s16 bendRange; // pitch bend range in cents
ALFxId fxId; // type of fx assigned to this chan
ALPan pan; // overall pan for this chan
u8 priority; // priority for this chan
u8 vol; // current volume for this chan
u8 fxmix; // current fx mix for this chan
u8 sustain; // current sustain pedal state
f32 pitchBend; // current pitch bend val in cents
} ALChanState;
typedef struct ALSeq_s {
u8* base; // ptr to start of sequence file
u8* trackStart; // ptr to first MIDI event
u8* curPtr; // ptr to next event to read
s32 lastTicks; // MIDI ticks for last event
s32 len; // length of sequence in bytes
f32 qnpt; // qrter notes / tick (1/division)
s16 division; // ticks per quarter note
s16 lastStatus; // for running status
} ALSeq;
typedef struct {
u32 trackOffset[16];
u32 division;
} ALCMidiHdr;
typedef struct ALCSeq_s {
ALCMidiHdr* base; // ptr to start of sequence file
u32 validTracks; // set of flags, showing valid tracks
f32 qnpt; // qrter notes / tick (1/division)
u32 lastTicks; // keep track of ticks incase app wants
u32 lastDeltaTicks; // number of delta ticks of last event
u32 deltaFlag; // flag: set if delta's not subtracted
u8* curLoc[16]; // ptr to current track location, may point to next event, or may point to a backup code
u8* curBUPtr[16]; // ptr to next event if in backup mode
u8 curBULen[16]; // if > 0, then in backup mode
u8 lastStatus[16]; // for running status
u32 evtDeltaTicks[16]; // delta time to next event
} ALCSeq;
typedef struct {
u32 validTracks;
s32 lastTicks;
u32 lastDeltaTicks;
u8* curLoc[16];
u8* curBUPtr[16];
u8 curBULen[16];
u8 lastStatus[16];
u32 evtDeltaTicks[16];
} ALCSeqMarker;
#define NO_SOUND_ERR_MASK (1 << 0)
#define NOTE_OFF_ERR_MASK (1 << 1)
#define NO_VOICE_ERR_MASK (1 << 2)
typedef struct {
s32 maxVoices; // max number of voices to alloc
s32 maxEvents; // max internal events to support
u8 maxChannels; // max MIDI channels to support (16)
u8 debugFlags; // control which error get reported
ALHeap* heap; // ptr to initialized heap
void* initOsc;
void* updateOsc;
void* stopOsc;
} ALSeqpConfig;
typedef ALMicroTime (*ALOscInit)(void** oscState, f32* initVal, u8 oscType, u8 oscRate, u8 oscDepth, u8 oscDelay);
typedef ALMicroTime (*ALOscUpdate)(void* oscState, f32* updateVal);
typedef void (*ALOscStop)(void* oscState);
typedef struct {
ALPlayer node; // note: must be first in structure
ALSynth* drvr; // reference to the client driver
ALSeq* target; // current sequence
ALMicroTime curTime;
ALBank* bank; // current ALBank
s32 uspt; // microseconds per tick
s32 nextDelta; // microseconds to next callback
s32 state;
u16 chanMask; // active channels
s16 vol; // overall sequence volume
u8 maxChannels; // number of MIDI channels
u8 debugFlags; // control which error get reported
ALEvent nextEvent;
ALEventQueue evtq;
ALMicroTime frameTime;
ALChanState* chanState; // 16 channels for MIDI
ALVoiceState* vAllocHead; // list head for allocated voices
ALVoiceState* vAllocTail; // list tail for allocated voices
ALVoiceState* vFreeList; // list of free voice state structs
ALOscInit initOsc;
ALOscUpdate updateOsc;
ALOscStop stopOsc;
ALSeqMarker* loopStart;
ALSeqMarker* loopEnd;
s32 loopCount; // -1 = loop forever, 0 = no loop
} ALSeqPlayer;
typedef struct {
ALPlayer node; // note: must be first in structure
ALSynth* drvr; // reference to the client driver
ALCSeq* target; // current sequence
ALMicroTime curTime;
ALBank* bank; // current ALBank
s32 uspt; // microseconds per tick
s32 nextDelta; // microseconds to next callback
s32 state;
u16 chanMask; // active channels
s16 vol; // overall sequence volume
u8 maxChannels; // number of MIDI channels
u8 debugFlags; // control which error get reported
ALEvent nextEvent;
ALEventQueue evtq;
ALMicroTime frameTime;
ALChanState* chanState; // 16 channels for MIDI
ALVoiceState* vAllocHead; // list head for allocated voices
ALVoiceState* vAllocTail; // list tail for allocated voices
ALVoiceState* vFreeList; // list of free voice state structs
ALOscInit initOsc;
ALOscUpdate updateOsc;
ALOscStop stopOsc;
} ALCSPlayer;
// Sequence data representation routines
void alSeqNew(ALSeq* seq, u8* ptr, s32 len);
void alSeqNextEvent(ALSeq* seq, ALEvent* event);
s32 alSeqGetTicks(ALSeq* seq);
f32 alSeqTicksToSec(ALSeq* seq, s32 ticks, u32 tempo);
u32 alSeqSecToTicks(ALSeq* seq, f32 sec, u32 tempo);
void alSeqNewMarker(ALSeq* seq, ALSeqMarker* m, u32 ticks);
void alSeqSetLoc(ALSeq* seq, ALSeqMarker* marker);
void alSeqGetLoc(ALSeq* seq, ALSeqMarker* marker);
// Compact Sequence data representation routines
void alCSeqNew(ALCSeq* seq, u8* ptr);
void alCSeqNextEvent(ALCSeq* seq,ALEvent* evt);
s32 alCSeqGetTicks(ALCSeq* seq);
f32 alCSeqTicksToSec(ALCSeq* seq, s32 ticks, u32 tempo);
u32 alCSeqSecToTicks(ALCSeq* seq, f32 sec, u32 tempo);
void alCSeqNewMarker(ALCSeq* seq, ALCSeqMarker* m, u32 ticks);
void alCSeqSetLoc(ALCSeq* seq, ALCSeqMarker* marker);
void alCSeqGetLoc(ALCSeq* seq, ALCSeqMarker* marker);
// Sequence Player routines
f32 alCents2Ratio(s32 cents);
void alSeqpNew(ALSeqPlayer* seqp, ALSeqpConfig* config);
void alSeqpDelete(ALSeqPlayer* seqp);
void alSeqpSetSeq(ALSeqPlayer* seqp, ALSeq* seq);
ALSeq* alSeqpGetSeq(ALSeqPlayer* seqp);
void alSeqpPlay(ALSeqPlayer* seqp);
void alSeqpStop(ALSeqPlayer* seqp);
s32 alSeqpGetState(ALSeqPlayer* seqp);
void alSeqpSetBank(ALSeqPlayer* seqp, ALBank* b);
void alSeqpSetTempo(ALSeqPlayer* seqp, s32 tempo);
s32 alSeqpGetTempo(ALSeqPlayer* seqp);
s16 alSeqpGetVol(ALSeqPlayer* seqp); // Master volume control
void alSeqpSetVol(ALSeqPlayer* seqp, s16 vol);
void alSeqpLoop(ALSeqPlayer* seqp, ALSeqMarker* start, ALSeqMarker* end, s32 count);
void alSeqpSetChlProgram(ALSeqPlayer* seqp, u8 chan, u8 prog);
s32 alSeqpGetChlProgram(ALSeqPlayer* seqp, u8 chan);
void alSeqpSetChlFXMix(ALSeqPlayer* seqp, u8 chan, u8 fxmix);
u8 alSeqpGetChlFXMix(ALSeqPlayer* seqp, u8 chan);
void alSeqpSetChlVol(ALSeqPlayer* seqp, u8 chan, u8 vol);
u8 alSeqpGetChlVol(ALSeqPlayer* seqp, u8 chan);
void alSeqpSetChlPan(ALSeqPlayer* seqp, u8 chan, ALPan pan);
ALPan alSeqpGetChlPan(ALSeqPlayer* seqp, u8 chan);
void alSeqpSetChlPriority(ALSeqPlayer* seqp, u8 chan, u8 priority);
u8 alSeqpGetChlPriority(ALSeqPlayer* seqp, u8 chan);
void alSeqpSendMidi(ALSeqPlayer* seqp, s32 ticks, u8 status, u8 byte1, u8 byte2);
// Maintain backwards compatibility with old routine names.
#define alSeqpSetProgram alSeqpSetChlProgram
#define alSeqpGetProgram alSeqpGetChlProgram
#define alSeqpSetFXMix alSeqpSetChlFXMix
#define alSeqpGetFXMix alSeqpGetChlFXMix
#define alSeqpSetPan alSeqpSetChlPan
#define alSeqpGetPan alSeqpGetChlPan
#define alSeqpSetChannelPriority alSeqpSetChlPriority
#define alSeqpGetChannelPriority alSeqpGetChlPriority
// Compressed Sequence Player routines
void alCSPNew(ALCSPlayer* seqp, ALSeqpConfig* config);
void alCSPDelete(ALCSPlayer* seqp);
void alCSPSetSeq(ALCSPlayer* seqp, ALCSeq* seq);
ALCSeq* alCSPGetSeq(ALCSPlayer* seqp);
void alCSPPlay(ALCSPlayer* seqp);
void alCSPStop(ALCSPlayer* seqp);
s32 alCSPGetState(ALCSPlayer* seqp);
void alCSPSetBank(ALCSPlayer* seqp, ALBank* b);
void alCSPSetTempo(ALCSPlayer* seqp, s32 tempo);
s32 alCSPGetTempo(ALCSPlayer* seqp);
s16 alCSPGetVol(ALCSPlayer* seqp);
void alCSPSetVol(ALCSPlayer* seqp, s16 vol);
void alCSPSetChlProgram(ALCSPlayer* seqp, u8 chan, u8 prog);
s32 alCSPGetChlProgram(ALCSPlayer* seqp, u8 chan);
void alCSPSetChlFXMix(ALCSPlayer* seqp, u8 chan, u8 fxmix);
u8 alCSPGetChlFXMix(ALCSPlayer* seqp, u8 chan);
void alCSPSetChlPan(ALCSPlayer* seqp, u8 chan, ALPan pan);
ALPan alCSPGetChlPan(ALCSPlayer* seqp, u8 chan);
void alCSPSetChlVol(ALCSPlayer* seqp, u8 chan, u8 vol);
u8 alCSPGetChlVol(ALCSPlayer* seqp, u8 chan);
void alCSPSetChlPriority(ALCSPlayer* seqp, u8 chan, u8 priority);
u8 alCSPGetChlPriority(ALCSPlayer* seqp, u8 chan);
void alCSPSendMidi(ALCSPlayer* seqp, s32 ticks, u8 status, u8 byte1, u8 byte2);
// Maintain backwards compatibility with old routine names.
#define alCSPSetProgram alCSPSetChlProgram
#define alCSPGetProgram alCSPGetChlProgram
#define alCSPSetFXMix alCSPSetChlFXMix
#define alCSPGetFXMix alCSPGetChlFXMix
#define alCSPSetPan alCSPSetChlPan
#define alCSPGetPan alCSPGetChlPan
#define alCSPSetChannelPriority alCSPSetChlPriority
#define alCSPGetChannelPriority alCSPGetChlPriority
/***********************************************************************
* Sound Player stuff
***********************************************************************/
typedef struct {
s32 maxSounds;
s32 maxEvents;
ALHeap* heap;
} ALSndpConfig;
typedef struct {
ALPlayer node; // note: must be first in structure
ALEventQueue evtq;
ALEvent nextEvent;
ALSynth* drvr; // reference to the client driver
s32 target;
void* sndState;
s32 maxSounds;
ALMicroTime frameTime;
ALMicroTime nextDelta; // microseconds to next callback
ALMicroTime curTime;
} ALSndPlayer;
typedef s16 ALSndId;
void alSndpNew(ALSndPlayer* sndp, ALSndpConfig* c);
void alSndpDelete(ALSndPlayer* sndp);
ALSndId alSndpAllocate(ALSndPlayer* sndp, ALSound* sound);
void alSndpDeallocate(ALSndPlayer* sndp, ALSndId id);
void alSndpSetSound(ALSndPlayer* sndp, ALSndId id);
ALSndId alSndpGetSound(ALSndPlayer* sndp);
void alSndpPlay(ALSndPlayer* sndp);
void alSndpPlayAt(ALSndPlayer* sndp, ALMicroTime delta);
void alSndpStop(ALSndPlayer* sndp);
void alSndpSetVol(ALSndPlayer* sndp, s16 vol);
void alSndpSetPitch(ALSndPlayer* sndp, f32 pitch);
void alSndpSetPan(ALSndPlayer* sndp, ALPan pan);
void alSndpSetPriority(ALSndPlayer* sndp, ALSndId id, u8 priority);
void alSndpSetFXMix(ALSndPlayer* sndp, u8 mix);
s32 alSndpGetState(ALSndPlayer* sndp);
#endif

View file

@ -0,0 +1,383 @@
#ifndef _ABI_H_
#define _ABI_H_
#define _SHIFTL(v, s, w) \
((u32) (((u32)(v) & ((1 << (w)) - 1)) << (s)))
#define _SHIFTR(v, s, w) \
((u32)(((u32)(v) >> (s)) & ((1 << (w)) - 1)))
/* Audio commands: */
#define A_SPNOOP 0
#define A_ADPCM 1
#define A_CLEARBUFF 2
#define A_ENVMIXER 3
#define A_LOADBUFF 4
#define A_RESAMPLE 5
#define A_SAVEBUFF 6
#define A_SEGMENT 7
#define A_SETBUFF 8
#define A_SETVOL 9
#define A_DMEMMOVE 10
#define A_LOADADPCM 11
#define A_MIXER 12
#define A_INTERLEAVE 13
#define A_POLEF 14
#define A_SETLOOP 15
#define ACMD_SIZE 32
/**
* Audio flags
*/
#define A_INIT 0x01
#define A_CONTINUE 0x00
#define A_LOOP 0x02
#define A_OUT 0x02
#define A_LEFT 0x02
#define A_RIGHT 0x00
#define A_VOL 0x04
#define A_RATE 0x00
#define A_AUX 0x08
#define A_NOAUX 0x00
#define A_MAIN 0x00
#define A_MIX 0x10
#if defined(_LANGUAGE_C) || defined(_LANGUAGE_C_PLUS_PLUS)
/**
* Data Structures.
*/
typedef struct {
unsigned int cmd : 8;
unsigned int flags : 8;
unsigned int gain : 16;
unsigned int addr;
} Aadpcm;
typedef struct {
unsigned int cmd : 8;
unsigned int flags : 8;
unsigned int gain : 16;
unsigned int addr;
} Apolef;
typedef struct {
unsigned int cmd : 8;
unsigned int flags : 8;
unsigned int pad1 : 16;
unsigned int addr;
} Aenvelope;
typedef struct {
unsigned int cmd : 8;
unsigned int pad1 : 8;
unsigned int dmem : 16;
unsigned int pad2 : 16;
unsigned int count : 16;
} Aclearbuff;
typedef struct {
unsigned int cmd : 8;
unsigned int pad1 : 8;
unsigned int pad2 : 16;
unsigned int inL : 16;
unsigned int inR : 16;
} Ainterleave;
typedef struct {
unsigned int cmd : 8;
unsigned int pad1 : 24;
unsigned int addr;
} Aloadbuff;
typedef struct {
unsigned int cmd : 8;
unsigned int flags : 8;
unsigned int pad1 : 16;
unsigned int addr;
} Aenvmixer;
typedef struct {
unsigned int cmd : 8;
unsigned int flags : 8;
unsigned int gain : 16;
unsigned int dmemi : 16;
unsigned int dmemo : 16;
} Amixer;
typedef struct {
unsigned int cmd : 8;
unsigned int flags : 8;
unsigned int dmem2 : 16;
unsigned int addr;
} Apan;
typedef struct {
unsigned int cmd : 8;
unsigned int flags : 8;
unsigned int pitch : 16;
unsigned int addr;
} Aresample;
typedef struct {
unsigned int cmd : 8;
unsigned int flags : 8;
unsigned int pad1 : 16;
unsigned int addr;
} Areverb;
typedef struct {
unsigned int cmd : 8;
unsigned int pad1 : 24;
unsigned int addr;
} Asavebuff;
typedef struct {
unsigned int cmd : 8;
unsigned int pad1 : 24;
unsigned int pad2 : 2;
unsigned int number : 4;
unsigned int base : 24;
} Asegment;
typedef struct {
unsigned int cmd : 8;
unsigned int flags : 8;
unsigned int dmemin : 16;
unsigned int dmemout : 16;
unsigned int count : 16;
} Asetbuff;
typedef struct {
unsigned int cmd : 8;
unsigned int flags : 8;
unsigned int vol : 16;
unsigned int voltgt : 16;
unsigned int volrate : 16;
} Asetvol;
typedef struct {
unsigned int cmd : 8;
unsigned int pad1 : 8;
unsigned int dmemin : 16;
unsigned int dmemout : 16;
unsigned int count : 16;
} Admemmove;
typedef struct {
unsigned int cmd : 8;
unsigned int pad1 : 8;
unsigned int count : 16;
unsigned int addr;
} Aloadadpcm;
typedef struct {
unsigned int cmd : 8;
unsigned int pad1 : 8;
unsigned int pad2 : 16;
unsigned int addr;
} Asetloop;
/**
* Generic Acmd Packet
*/
typedef struct {
unsigned int w0;
unsigned int w1;
} Awords;
typedef union {
Awords words;
Aadpcm adpcm;
Apolef polef;
Aclearbuff clearbuff;
Aenvelope envelope;
Ainterleave interleave;
Aloadbuff loadbuff;
Aenvmixer envmixer;
Aresample resample;
Areverb reverb;
Asavebuff savebuff;
Asegment segment;
Asetbuff setbuff;
Asetvol setvol;
Admemmove dmemmove;
Aloadadpcm loadadpcm;
Amixer mixer;
Asetloop setloop;
long long int force_union_align; /* dummy, force alignment */
} Acmd;
/**
* ADPCM State
*/
#define ADPCMVSIZE 8
#define ADPCMFSIZE 16
typedef short ADPCM_STATE[ADPCMFSIZE];
/**
* Pole filter state
*/
typedef short POLEF_STATE[4];
/**
* Resampler state
*/
typedef short RESAMPLE_STATE[16];
/**
* Resampler constants
*/
#define UNITY_PITCH 0x8000
#define MAX_RATIO 1.99996 /* within .03 cents of +1 octave */
/**
* Enveloper/Mixer state
*/
typedef short ENVMIX_STATE[40];
/**
* Macros to assemble the audio command list
*/
#define aADPCMdec(pkt, f, s) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = _SHIFTL(A_ADPCM, 24, 8) | _SHIFTL(f, 16, 8); \
_a->words.w1 = (unsigned int)(s); \
}
#define aPoleFilter(pkt, f, g, s) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = (_SHIFTL(A_POLEF, 24, 8) | _SHIFTL(f, 16, 8) | \
_SHIFTL(g, 0, 16)); \
_a->words.w1 = (unsigned int)(s); \
}
#define aClearBuffer(pkt, d, c) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = _SHIFTL(A_CLEARBUFF, 24, 8) | _SHIFTL(d, 0, 24); \
_a->words.w1 = (unsigned int)(c); \
}
#define aEnvMixer(pkt, f, s) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = _SHIFTL(A_ENVMIXER, 24, 8) | _SHIFTL(f, 16, 8); \
_a->words.w1 = (unsigned int)(s); \
}
#define aInterleave(pkt, l, r) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = _SHIFTL(A_INTERLEAVE, 24, 8); \
_a->words.w1 = _SHIFTL(l, 16, 16) | _SHIFTL(r, 0, 16); \
}
#define aLoadBuffer(pkt, s) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = _SHIFTL(A_LOADBUFF, 24, 8); \
_a->words.w1 = (unsigned int)(s); \
}
#define aMix(pkt, f, g, i, o) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = (_SHIFTL(A_MIXER, 24, 8) | _SHIFTL(f, 16, 8) | \
_SHIFTL(g, 0, 16)); \
_a->words.w1 = _SHIFTL(i, 16, 16) | _SHIFTL(o, 0, 16); \
}
#define aPan(pkt, f, d, s) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = (_SHIFTL(A_PAN, 24, 8) | _SHIFTL(f, 16, 8) | \
_SHIFTL(d, 0, 16)); \
_a->words.w1 = (unsigned int)(s); \
}
#define aResample(pkt, f, p, s) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = (_SHIFTL(A_RESAMPLE, 24, 8) | _SHIFTL(f, 16, 8) | \
_SHIFTL(p, 0, 16)); \
_a->words.w1 = (unsigned int)(s); \
}
#define aSaveBuffer(pkt, s) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = _SHIFTL(A_SAVEBUFF, 24, 8); \
_a->words.w1 = (unsigned int)(s); \
}
#define aSegment(pkt, s, b) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = _SHIFTL(A_SEGMENT, 24, 8); \
_a->words.w1 = _SHIFTL(s, 24, 8) | _SHIFTL(b, 0, 24); \
}
#define aSetBuffer(pkt, f, i, o, c) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = (_SHIFTL(A_SETBUFF, 24, 8) | _SHIFTL(f, 16, 8) | \
_SHIFTL(i, 0, 16)); \
_a->words.w1 = _SHIFTL(o, 16, 16) | _SHIFTL(c, 0, 16); \
}
#define aSetVolume(pkt, f, v, t, r) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = (_SHIFTL(A_SETVOL, 24, 8) | _SHIFTL(f, 16, 16) | \
_SHIFTL(v, 0, 16)); \
_a->words.w1 = _SHIFTL(t, 16, 16) | _SHIFTL(r, 0, 16); \
}
#define aSetLoop(pkt, a) \
{ \
Acmd* _a = (Acmd*)pkt; \
_a->words.w0 = _SHIFTL(A_SETLOOP, 24, 8); \
_a->words.w1 = (unsigned int)(a); \
}
#define aDMEMMove(pkt, i, o, c) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = _SHIFTL(A_DMEMMOVE, 24, 8) | _SHIFTL(i, 0, 24); \
_a->words.w1 = _SHIFTL(o, 16, 16) | _SHIFTL(c, 0, 16); \
}
#define aLoadADPCM(pkt, c, d) \
{ \
Acmd* _a = (Acmd*)pkt; \
\
_a->words.w0 = _SHIFTL(A_LOADADPCM, 24, 8) | _SHIFTL(c, 0, 24); \
_a->words.w1 = (unsigned int)(d); \
}
#endif
#endif

View file

@ -1 +1,375 @@
#include "libaudio.h"
#include "synthInternals.h"
#include "ultra64/R4300.h"
#ifndef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#endif
#define ADPCMFBYTES 9
#define LFSAMPLES 4
static Acmd* _decodeChunk(Acmd* ptr, ALLoadFilter* f, s32 tsam, s32 nbytes, s16 outp, s16 inp, u32 flags);
Acmd* alAdpcmPull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p) {
Acmd* ptr = p;
s16 inp;
s32 tsam;
s32 nframes;
s32 nbytes;
s32 overFlow;
s32 startZero;
s32 nOver;
s32 nSam;
s32 op;
s32 nLeft;
s32 bEnd;
s32 decoded = false;
s32 looped = false;
ALLoadFilter* f = (ALLoadFilter*)filter;
if (outCount == 0) {
return ptr;
}
inp = AL_DECODER_IN;
aLoadADPCM(ptr++, f->bookSize, K0_TO_PHYS(f->table->waveInfo.adpcmWave.book->book));
looped = ((u32)(outCount + f->sample) > f->loop.end) && (f->loop.count != 0);
if (looped) {
nSam = f->loop.end - f->sample;
} else {
nSam = outCount;
}
if (f->lastsam != 0) {
nLeft = ADPCMFSIZE - f->lastsam;
} else {
nLeft = 0;
}
tsam = nSam - nLeft;
if (tsam < 0) {
tsam = 0;
}
nframes = (tsam + ADPCMFSIZE - 1) >> LFSAMPLES;
nbytes = nframes * ADPCMFBYTES;
if (looped) {
ptr = _decodeChunk(ptr, f, tsam, nbytes, *outp, inp, f->first);
// Fix up output pointer, which will be used as the input pointer by the following module.
if (f->lastsam != 0) {
*outp += f->lastsam << 1;
} else {
*outp += ADPCMFSIZE << 1;
}
// Now fix up state info to reflect the loop start point
f->lastsam = f->loop.start & 0xF;
f->memin = (uintptr_t)f->table->base + ADPCMFBYTES * ((s32)(f->loop.start >> LFSAMPLES) + 1);
f->sample = f->loop.start;
bEnd = *outp;
while (outCount > nSam) {
outCount -= nSam;
// Put next one after the end of the last lot - on the frame boundary (32 byte) after the end.
op = (bEnd + ((nframes + 1) << (LFSAMPLES + 1))) & ~0x1F;
// The actual end of data
bEnd += nSam << 1;
// -1 is loop forever - the loop count is not exact now for small loops!
if (f->loop.count != -1u && f->loop.count != 0) {
f->loop.count--;
}
// What's left to compute.
nSam = MIN((u32)outCount, f->loop.end - f->loop.start);
tsam = nSam - ADPCMFSIZE + f->lastsam;
if (tsam < 0) {
tsam = 0;
}
nframes = (tsam + ADPCMFSIZE - 1) >> LFSAMPLES;
nbytes = nframes * ADPCMFBYTES;
ptr = _decodeChunk(ptr, f, tsam, nbytes, op, inp, f->first | A_LOOP);
// Merge the two sections in DMEM.
aDMEMMove(ptr++, op + (f->lastsam << 1), bEnd, nSam << 1);
}
f->lastsam = (outCount + f->lastsam) & 0xF;
f->sample += outCount;
f->memin += ADPCMFBYTES * nframes;
return ptr;
}
// The unlooped case, which is executed most of the time
nSam = nframes << LFSAMPLES;
// overFlow is the number of bytes past the end of the bitstream I try to generate
overFlow = f->memin + nbytes - ((uintptr_t)f->table->base + f->table->len);
if (overFlow < 0) {
overFlow = 0;
}
nOver = (overFlow / ADPCMFBYTES) << LFSAMPLES;
if (nOver > nSam + nLeft) {
nOver = nSam + nLeft;
}
nbytes -= overFlow;
if (nOver - (nOver & 0xF) < outCount) {
decoded = true;
ptr = _decodeChunk(ptr, f, nSam - nOver, nbytes, *outp, inp, f->first);
if (f->lastsam != 0) {
*outp += f->lastsam << 1;
} else {
*outp += ADPCMFSIZE << 1;
}
f->lastsam = (outCount + f->lastsam) & 0xF;
f->sample += outCount;
f->memin += ADPCMFBYTES * nframes;
} else {
f->lastsam = 0;
f->memin += ADPCMFBYTES * nframes;
}
// Put zeros in if necessary
if (nOver != 0) {
f->lastsam = 0;
if (decoded) {
startZero = (nLeft + nSam - nOver) << 1;
} else {
startZero = 0;
}
aClearBuffer(ptr++, startZero + *outp, nOver << 1);
}
return ptr;
}
Acmd* alRaw16Pull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p) {
Acmd* ptr = p;
s32 nbytes;
s32 dramLoc;
s32 dramAlign;
s32 dmemAlign;
s32 overFlow;
s32 startZero;
s32 nSam;
s32 op;
ALLoadFilter* f = (ALLoadFilter*)filter;
ALFilter* a = (ALFilter*)filter;
if (outCount == 0) {
return ptr;
}
if ((u32)(outCount + f->sample) > f->loop.end && f->loop.count != 0) {
nSam = f->loop.end - f->sample;
nbytes = nSam << 1;
if (nSam > 0) {
dramLoc = (f->dma)(f->memin, nbytes, f->dmaState);
// Make sure enough is loaded into DMEM to take care of 8 byte alignment
dramAlign = dramLoc & 7;
nbytes += dramAlign;
aSetBuffer(ptr++, 0, *outp, 0, nbytes + 8 - (nbytes & 7));
aLoadBuffer(ptr++, dramLoc - dramAlign);
} else {
dramAlign = 0;
}
// Fix up output pointer to allow for dram alignment
*outp += dramAlign;
f->memin = (uintptr_t)f->table->base + (f->loop.start << 1);
f->sample = f->loop.start;
op = *outp;
while (outCount > nSam) {
op += (nSam << 1);
outCount -= nSam;
// -1 is loop forever
if (f->loop.count != -1u && f->loop.count != 0) {
f->loop.count--;
}
// What to compute.
nSam = MIN((u32)outCount, f->loop.end - f->loop.start);
nbytes = nSam << 1;
// Do the next section, same as last.
dramLoc = (f->dma)(f->memin, nbytes, f->dmaState);
// Make sure enough is loaded into DMEM to take care of 8 byte alignment
dramAlign = dramLoc & 7;
nbytes += dramAlign;
if (op & 7) {
dmemAlign = 8 - (op & 7);
} else {
dmemAlign = 0;
}
aSetBuffer(ptr++, 0, op + dmemAlign, 0, nbytes + 8 - (nbytes & 7));
aLoadBuffer(ptr++, dramLoc - dramAlign);
// Merge the two sections in DMEM.
if (dramAlign || dmemAlign)
aDMEMMove(ptr++, op + dramAlign + dmemAlign, op, nSam << 1);
}
f->sample += outCount;
f->memin += outCount << 1;
return ptr;
}
// The unlooped case, which is executed most of the time
//
// overFlow is the number of bytes past the end
// of the bitstream I try to generate
nbytes = outCount << 1;
overFlow = f->memin + nbytes - ((uintptr_t)f->table->base + f->table->len);
if (overFlow < 0) {
overFlow = 0;
}
if (overFlow > nbytes) {
overFlow = nbytes;
}
if (overFlow < nbytes) {
if (outCount > 0) {
nbytes -= overFlow;
dramLoc = f->dma(f->memin, nbytes, f->dmaState);
// Make sure enough is loaded into DMEM to take care of 8 byte alignment
dramAlign = dramLoc & 7;
nbytes += dramAlign;
aSetBuffer(ptr++, 0, *outp, 0x000, nbytes + 8 - (nbytes & 7));
aLoadBuffer(ptr++, dramLoc - dramAlign);
} else {
dramAlign = 0;
}
*outp += dramAlign;
f->sample += outCount;
f->memin += outCount << 1;
} else {
f->memin += outCount << 1;
}
// Put zeros in if necessary
if (overFlow != 0) {
startZero = (outCount << 1) - overFlow;
if (startZero < 0) {
startZero = 0;
}
aClearBuffer(ptr++, startZero + *outp, overFlow);
}
return ptr;
}
s32 alLoadParam(void* filter, s32 paramID, void* param) {
ALLoadFilter* a = (ALLoadFilter*)filter;
ALFilter* f = (ALFilter*)filter;
switch (paramID) {
case AL_FILTER_SET_WAVETABLE:
a->table = (ALWaveTable*)param;
a->memin = (uintptr_t)a->table->base;
a->sample = 0;
switch (a->table->type) {
case AL_ADPCM_WAVE:
// Set up the correct handler
f->handler = alAdpcmPull;
// Make sure the table length is an integer number of frames
a->table->len = ADPCMFBYTES * (s32)(a->table->len / ADPCMFBYTES);
a->bookSize = 2 * a->table->waveInfo.adpcmWave.book->order *
a->table->waveInfo.adpcmWave.book->npredictors * ADPCMVSIZE;
if (a->table->waveInfo.adpcmWave.loop != NULL) {
a->loop.start = a->table->waveInfo.adpcmWave.loop->start;
a->loop.end = a->table->waveInfo.adpcmWave.loop->end;
a->loop.count = a->table->waveInfo.adpcmWave.loop->count;
alCopy(a->table->waveInfo.adpcmWave.loop->state, a->lstate, sizeof(ADPCM_STATE));
} else {
a->loop.start = a->loop.end = a->loop.count = 0;
}
break;
case AL_RAW16_WAVE:
f->handler = alRaw16Pull;
if (a->table->waveInfo.rawWave.loop != NULL) {
a->loop.start = a->table->waveInfo.rawWave.loop->start;
a->loop.end = a->table->waveInfo.rawWave.loop->end;
a->loop.count = a->table->waveInfo.rawWave.loop->count;
} else {
a->loop.start = a->loop.end = a->loop.count = 0;
}
break;
default:
break;
}
break;
case AL_FILTER_RESET:
a->lastsam = 0;
a->first = true;
a->sample = 0;
// sct 2/14/96 - Check table since it is initialized to null and get loop info according to table type.
if (a->table != NULL) {
a->memin = (uintptr_t)a->table->base;
if (a->table->type == AL_ADPCM_WAVE) {
if (a->table->waveInfo.adpcmWave.loop != NULL) {
a->loop.count = a->table->waveInfo.adpcmWave.loop->count;
}
} else if (a->table->type == AL_RAW16_WAVE) {
if (a->table->waveInfo.rawWave.loop != NULL) {
a->loop.count = a->table->waveInfo.rawWave.loop->count;
}
}
}
break;
default:
break;
}
}
static Acmd* _decodeChunk(Acmd* ptr, ALLoadFilter* f, s32 tsam, s32 nbytes, s16 outp, s16 inp, u32 flags) {
s32 dramAlign;
s32 dramLoc;
if (nbytes > 0) {
dramLoc = f->dma(f->memin, nbytes, f->dmaState);
// Make sure enough is loaded into DMEM to take care of 8 byte alignment
dramAlign = dramLoc & 7;
nbytes += dramAlign;
aSetBuffer(ptr++, 0, inp, 0, nbytes + 8 - (nbytes & 7));
aLoadBuffer(ptr++, dramLoc - dramAlign);
} else {
dramAlign = 0;
}
if (flags & A_LOOP) {
aSetLoop(ptr++, K0_TO_PHYS(f->lstate));
}
aSetBuffer(ptr++, 0, inp + dramAlign, outp, tsam << 1);
aADPCMdec(ptr++, flags, K0_TO_PHYS(f->state));
f->first = false;
return ptr;
}

View file

@ -1 +1,38 @@
#include "libaudio.h"
#include "synthInternals.h"
Acmd* alMainBusPull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p) {
Acmd* ptr = p;
ALMainBus* m = (ALMainBus*)filter;
ALFilter** sources = m->sources;
s32 i;
// clear the output buffers here
aClearBuffer(ptr++, AL_MAIN_L_OUT, outCount << 1);
aClearBuffer(ptr++, AL_MAIN_R_OUT, outCount << 1);
for (i = 0; i < m->sourceCount; i++) {
ptr = sources[i]->handler(sources[i], outp, outCount, sampleOffset, ptr);
aSetBuffer(ptr++, 0, 0x000, 0x000, outCount << 1);
aMix(ptr++, 0, 0x7FFF, AL_AUX_L_OUT, AL_MAIN_L_OUT);
aMix(ptr++, 0, 0x7FFF, AL_AUX_R_OUT, AL_MAIN_R_OUT);
}
return ptr;
}
s32 alMainBusParam(void* filter, s32 paramID, void* param) {
ALMainBus* m = (ALMainBus*)filter;
ALFilter** sources = m->sources;
switch (paramID) {
case AL_FILTER_ADD_SOURCE:
sources[m->sourceCount++] = (ALFilter*)param;
break;
default:
break;
}
return 0;
}

View file

@ -1 +1,98 @@
#include "libaudio.h"
#include "synthInternals.h"
#include "ultra64/convert.h"
Acmd* alResamplePull(void* filter, s16* outp, s32 outCnt, s32 sampleOffset, Acmd* p) {
ALResampler* f = (ALResampler*)filter;
Acmd* ptr = p;
s16 inp;
s32 inCount;
ALFilter* source = f->filter.source;
s32 incr;
f32 finCount;
inp = AL_DECODER_OUT;
if (outCnt == 0) {
return ptr;
}
// check if resampler is required
if (f->upitch != 0) {
ptr = (*source->handler)(source, &inp, outCnt, sampleOffset, p);
aDMEMMove(ptr++, inp, *outp, outCnt << 1);
} else {
// clip to maximum allowable pitch
// FIXME: should we check for some minimum as well?
if (f->ratio > MAX_RATIO) {
f->ratio = MAX_RATIO;
}
// quantize the pitch
f->ratio = (s32)(f->ratio * UNITY_PITCH);
f->ratio = f->ratio / UNITY_PITCH;
// determine how many samples to generate
finCount = f->delta + f->ratio * (f32)outCnt;
inCount = (s32)finCount;
f->delta = finCount - (f32)inCount;
// ask all filters upstream from us to build their command lists.
ptr = (*source->handler)(source, &inp, inCount, sampleOffset, p);
// construct our portion of the command list
incr = (s32)(f->ratio * UNITY_PITCH);
aSetBuffer(ptr++, 0, inp, *outp, outCnt << 1);
aResample(ptr++, f->first, incr, osVirtualToPhysical(f->state));
f->first = false;
}
return ptr;
}
s32 alResampleParam(void* filter, s32 paramID, void* param) {
ALFilter* f = (ALFilter*)filter;
ALResampler* r = (ALResampler*)filter;
union {
f32 f;
s32 i;
} data;
switch (paramID) {
case AL_FILTER_SET_SOURCE:
f->source = (ALFilter*)param;
break;
case AL_FILTER_RESET:
r->delta = 0.0f;
r->first = true;
r->motion = AL_STOPPED;
r->upitch = 0;
if (f->source != NULL) {
(*f->source->setParam)(f->source, AL_FILTER_RESET, 0);
}
break;
case AL_FILTER_START:
r->motion = AL_PLAYING;
if (f->source != NULL) {
(*f->source->setParam)(f->source, AL_FILTER_START, 0);
}
break;
case AL_FILTER_SET_PITCH:
data.i = (s32)param;
r->ratio = data.f;
break;
case AL_FILTER_SET_UNITY_PITCH:
r->upitch = 1;
break;
default:
if (f->source != NULL) {
(*f->source->setParam)(f->source, paramID, param);
}
break;
}
return 0;
}

View file

@ -1 +1,345 @@
#include "libaudio.h"
#include "synthInternals.h"
#include "ultra64/convert.h"
#define RANGE 2.0
extern ALGlobals* alGlobals;
Acmd* _loadOutputBuffer(ALFx* r, ALDelay* d, s32 buff, s32 incount, Acmd* p);
Acmd* _loadBuffer(ALFx* r, s16* curr_ptr, s32 buff, s32 count, Acmd* p);
Acmd* _saveBuffer(ALFx* r, s16* curr_ptr, s32 buff, s32 count, Acmd* p);
Acmd* _filterBuffer(ALLowPass* lp, s32 buff, s32 count, Acmd* p);
f32 _doModFunc(ALDelay* d, s32 count);
Acmd* alFxPull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p) {
Acmd* ptr = p;
ALFx* r = (ALFx*)filter;
ALFilter* source = r->filter.source;
s16 i;
s16 buff1;
s16 buff2;
s16 input;
s16 output;
s16* in_ptr;
s16* out_ptr;
s16 gain;
s16* prev_out_ptr = NULL;
ALDelay* d;
ALDelay* pd;
// pull channels going into this effect first
ptr = (*source->handler)(source, outp, outCount, sampleOffset, p);
input = AL_AUX_L_OUT;
output = AL_AUX_R_OUT;
buff1 = AL_TEMP_0;
buff2 = AL_TEMP_1;
aSetBuffer(ptr++, 0, 0x000, 0x000, outCount << 1); // set the buffer size
aMix(ptr++, 0, 0xDA83, AL_AUX_L_OUT, input); // .707L = L - .293L
aMix(ptr++, 0, 0x5A82, AL_AUX_R_OUT, input); // mix the AuxL and AuxR into the AuxL
// and write the mixed value to the delay line at r->input
ptr = _saveBuffer(r, r->input, input, outCount, ptr);
// clear the AL_AUX_R_OUT
aClearBuffer(ptr++, output, outCount << 1);
for (i = 0; i < r->section_count; i++) {
d = &r->delay[i]; // get the ALDelay structure
in_ptr = &r->input[-d->input];
out_ptr = &r->input[-d->output];
if (in_ptr == prev_out_ptr) {
s16 t = buff2;
buff2 = buff1;
buff1 = t;
} else {
// load data at in_ptr into buff1
ptr = _loadBuffer(r, in_ptr, buff1, outCount, ptr);
}
ptr = _loadOutputBuffer(r, d, buff2, outCount, ptr);
if (d->ffcoef != 0) {
aMix(ptr++, 0, (u16)d->ffcoef, buff1, buff2);
if (d->rs == NULL && d->lp == NULL) {
ptr = _saveBuffer(r, out_ptr, buff2, outCount, ptr);
}
}
if (d->fbcoef != 0) {
aMix(ptr++, 0, (u16)d->fbcoef, buff2, buff1);
ptr = _saveBuffer(r, in_ptr, buff1, outCount, ptr);
}
if (d->lp != NULL) {
ptr = _filterBuffer(d->lp, buff2, outCount, ptr);
}
if (d->rs == NULL) {
ptr = _saveBuffer(r, out_ptr, buff2, outCount, ptr);
}
if (d->gain != 0) {
aMix(ptr++, 0, (u16)d->gain, buff2, output);
}
prev_out_ptr = &r->input[d->output];
}
// bump the master delay line input pointer modulo the length
r->input += outCount;
if (r->input > &r->base[r->length]) {
r->input -= r->length;
}
// output already in AL_AUX_R_OUT, just copy to AL_AUX_L_OUT
aDMEMMove(ptr++, output, AL_AUX_L_OUT, outCount << 1);
return ptr;
}
s32 alFxParam(void* filter, s32 paramID, void* param) {
if (paramID == AL_FILTER_SET_SOURCE) {
ALFilter* f = (ALFilter*)filter;
f->source = (ALFilter*)param;
}
return 0;
}
/**
* This routine gets called by alSynSetFXParam. No checking takes place to
* verify the validity of the paramID or the param value. input and output
* values must be 8 byte aligned, so round down any param passed.
*/
s32 alFxParamHdl(void* filter, s32 paramID, void* param) {
ALFx* f = (ALFx*)filter;
s32 p = (paramID - 2) % 8;
s32 s = (paramID - 2) / 8;
s32 val = *(s32*)param;
#define INPUT_PARAM 0
#define OUTPUT_PARAM 1
#define FBCOEF_PARAM 2
#define FFCOEF_PARAM 3
#define GAIN_PARAM 4
#define CHORUSRATE_PARAM 5
#define CHORUSDEPTH_PARAM 6
#define LPFILT_PARAM 7
switch (p) {
case INPUT_PARAM:
f->delay[s].input = (u32)val & 0xFFFFFFF8;
break;
case OUTPUT_PARAM:
f->delay[s].output = (u32)val & 0xFFFFFFF8;
break;
case FFCOEF_PARAM:
f->delay[s].ffcoef = (s16)val;
break;
case FBCOEF_PARAM:
f->delay[s].fbcoef = (s16)val;
break;
case GAIN_PARAM:
f->delay[s].gain = (s16)val;
break;
case CHORUSRATE_PARAM:
f->delay[s].rsinc = (((f32)val / 1000) * RANGE) / alGlobals->drvr.outputRate;
break;
// the following constant is derived from:
//
// ratio = 2^(cents/1200)
//
// and therefore for hundredths of a cent
// x
// ln(ratio) = ---------------
// (120,000)/ln(2)
// where
// 120,000/ln(2) = 173123.40...
#define CONVERT 173123.404906676
case CHORUSDEPTH_PARAM:
f->delay[s].rsgain = ((f32)val / CONVERT) * (f->delay[s].output - f->delay[s].input);
break;
case LPFILT_PARAM:
if (f->delay[s].lp != NULL) {
f->delay[s].lp->fc = (s16)val;
_init_lpfilter(f->delay[s].lp);
}
break;
}
return 0;
}
Acmd* _loadOutputBuffer(ALFx* r, ALDelay* d, s32 buff, s32 incount, Acmd* p) {
Acmd* ptr = p;
s32 ratio;
s32 count;
s32 rbuff = AL_TEMP_2;
s16* out_ptr;
f32 fincount;
f32 fratio;
f32 delta;
s32 ramalign = 0;
s32 length;
// The following section implements the chorus resampling. Modulate where you pull
// the samples from, since you need varying amounts of samples.
if (d->rs != NULL) {
length = d->output - d->input;
// get the number of samples to modulate by
delta = _doModFunc(d, incount);
// find ratio of delta to delay length and quantize to same resolution as resampler
delta /= length; // convert delta from number of samples to a pitch ratio
delta = (s32)(delta * UNITY_PITCH); // quantize to value microcode will use
delta = delta / UNITY_PITCH;
// pitch ratio needs to be centered around 1, not zero
fratio = 1.0 - delta;
// d->rs->delta is the difference between the fractional and integer value of the samples needed.
// fratio * incount + rs->delta gives the number of samples needed for this frame.
fincount = d->rs->delta + (fratio * (f32)incount);
count = (s32)fincount; // quantize to s32
d->rs->delta = fincount - (f32)count; // calculate the round off and store
// d->rsdelta is amount the out_ptr has deviated from its starting position.
// You calc the out_ptr by taking d->output - d->rsdelta, and then using the
// negative of that as an index into the delay buffer. loadBuffer that uses this
// value then bumps it up if it is below the delay buffer.
out_ptr = &r->input[-(d->output - d->rsdelta)];
// calculate the number of samples needed to align the buffer
ramalign = ((intptr_t)out_ptr & 7) >> 1;
// load the rbuff with samples, note that there will be ramalign worth of samples at the
// begining which you don't care about.
ptr = _loadBuffer(r, out_ptr - ramalign, rbuff, count + ramalign, ptr);
// convert fratio to 16 bit fraction for microcode use
ratio = (s32)(fratio * UNITY_PITCH);
// set the buffers, and do the resample
aSetBuffer(ptr++, 0, rbuff + (ramalign << 1), buff, incount << 1);
aResample(ptr++, d->rs->first, ratio, osVirtualToPhysical(d->rs->state));
d->rs->first = false; // turn off first time flag
d->rsdelta += count - incount; // add the number of samples to d->rsdelta
} else {
out_ptr = &r->input[-d->output];
ptr = _loadBuffer(r, out_ptr, buff, incount, ptr);
}
return ptr;
}
/**
* This routine is for loading data from the delay line buff. If the
* address of curr_ptr < r->base, it will force it to be within r->base
* space, If the load goes past the end of r->base it will wrap around.
* Cause count bytes of data at curr_ptr (within the delay line) to be
* loaded into buff. (Buff is a dmem buffer)
*/
Acmd* _loadBuffer(ALFx* r, s16* curr_ptr, s32 buff, s32 count, Acmd* p) {
Acmd* ptr = p;
s32 after_end;
s32 before_end;
s16* updated_ptr;
s16* delay_end;
delay_end = &r->base[r->length];
if (curr_ptr < r->base) {
curr_ptr += r->length;
}
updated_ptr = curr_ptr + count;
if (updated_ptr > delay_end) {
after_end = updated_ptr - delay_end;
before_end = delay_end - curr_ptr;
aSetBuffer(ptr++, 0, buff, 0x000, before_end << 1);
aLoadBuffer(ptr++, osVirtualToPhysical(curr_ptr));
aSetBuffer(ptr++, 0, buff + (before_end << 1), 0, after_end << 1);
aLoadBuffer(ptr++, osVirtualToPhysical(r->base));
} else {
aSetBuffer(ptr++, 0, buff, 0x000, count << 1);
aLoadBuffer(ptr++, osVirtualToPhysical(curr_ptr));
}
aSetBuffer(ptr++, 0, 0x000, 0x000, count << 1);
return ptr;
}
/**
* This routine is for writing data to the delay line buff. If the
* address of curr_ptr < r->base, it will force it to be within r->base
* space. If the write goes past the end of r->base, it will wrap around
* Cause count bytes of data at buff to be written to delay line, curr_ptr.
*/
Acmd* _saveBuffer(ALFx* r, s16* curr_ptr, s32 buff, s32 count, Acmd* p) {
Acmd* ptr = p;
s32 after_end;
s32 before_end;
s16* updated_ptr;
s16* delay_end;
delay_end = &r->base[r->length];
if (curr_ptr < r->base) {
// probably just security, shouldn't occur
curr_ptr += r->length;
}
updated_ptr = curr_ptr + count;
if (updated_ptr > delay_end) { // if the data wraps past end of r->base
after_end = updated_ptr - delay_end;
before_end = delay_end - curr_ptr;
aSetBuffer(ptr++, 0, 0x000, buff, before_end << 1);
aSaveBuffer(ptr++, osVirtualToPhysical(curr_ptr));
aSetBuffer(ptr++, 0, 0x000, buff + (before_end << 1), after_end << 1);
aSaveBuffer(ptr++, osVirtualToPhysical(r->base));
aSetBuffer(ptr++, 0, 0x000, 0x000, count << 1);
} else {
aSetBuffer(ptr++, 0, 0x000, buff, count << 1);
aSaveBuffer(ptr++, osVirtualToPhysical(curr_ptr));
}
return ptr;
}
Acmd* _filterBuffer(ALLowPass* lp, s32 buff, s32 count, Acmd* p) {
Acmd* ptr = p;
aSetBuffer(ptr++, 0, buff, buff, count << 1);
aLoadADPCM(ptr++, 32, osVirtualToPhysical(lp->fcvec.fccoef));
aPoleFilter(ptr++, lp->first, lp->fgain, osVirtualToPhysical(lp->fstate));
lp->first = false;
return ptr;
}
/**
* Generate a triangle wave from -1 to 1, and find the current position
* in the wave. (Rate of the wave is controlled by d->rsinc, which is chorus
* rate) Multiply the current triangle wave value by d->rsgain, (chorus depth)
* which is expressed in number of samples back from output pointer the chorus
* should go at it's full chorus. In otherwords, this function returns a number
* of samples the output pointer should modulate backwards.
*/
f32 _doModFunc(ALDelay* d, s32 count) {
f32 val;
// generate bipolar sawtooth from -RANGE to +RANGE
d->rsval += d->rsinc * count;
d->rsval = (d->rsval > RANGE) ? (d->rsval - RANGE * 2) : d->rsval;
// convert to monopolar triangle from 0 to RANGE
val = d->rsval;
val = (val < 0) ? -val : val;
// convert to bipolar triangle from -1 to 1
val -= RANGE / 2;
return d->rsgain * val;
}

View file

@ -1 +1,36 @@
#include "libaudio.h"
#include "synthInternals.h"
Acmd* alSavePull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p) {
Acmd* ptr = p;
ALSave* f = (ALSave*)filter;
ALFilter* source = f->filter.source;
ptr = (*source->handler)(source, outp, outCount, sampleOffset, ptr);
aSetBuffer(ptr++, 0, 0x000, 0x000, outCount << 1);
aInterleave(ptr++, AL_MAIN_L_OUT, AL_MAIN_R_OUT);
aSetBuffer(ptr++, 0, 0x000, 0x000, outCount << 2);
aSaveBuffer(ptr++, f->dramout);
return ptr;
}
s32 alSaveParam(void* filter, s32 paramID, void* param) {
ALSave* a = (ALSave*)filter;
ALFilter* f = (ALFilter*)filter;
s32 pp = (s32)param;
switch (paramID) {
case AL_FILTER_SET_SOURCE:
f->source = (ALFilter*)param;
break;
case AL_FILTER_SET_DRAM:
a->dramout = pp;
break;
default:
break;
}
return 0;
}

View file

@ -1 +1,35 @@
#include "libaudio.h"
ALGlobals* alGlobals = NULL;
void alInit(ALGlobals* g, ALSynConfig* c) {
if (alGlobals == NULL) {
alGlobals = g;
alSynNew(&alGlobals->drvr, c);
}
}
void alClose(ALGlobals* glob) {
if (alGlobals != NULL) {
alSynDelete(&glob->drvr);
alGlobals = NULL;
}
}
void alLink(ALLink* ln, ALLink* to) {
ln->next = to->next;
ln->prev = to;
if (to->next != NULL) {
to->next->prev = ln;
}
to->next = ln;
}
void alUnlink(ALLink* ln) {
if (ln->next != NULL) {
ln->next->prev = ln->prev;
}
if (ln->prev != NULL) {
ln->prev->next = ln->next;
}
}

View file

@ -1 +1,8 @@
#include "synthInternals.h"
ALFxRef* alSynAllocFX(ALSynth* s, s16 bus, ALSynConfig* c, ALHeap* hp) {
alFxNew(&s->auxBus[bus].fx[0], c, hp);
alFxParam(&s->auxBus[bus].fx[0], AL_FILTER_SET_SOURCE, &s->auxBus[bus]);
alMainBusParam(s->mainBus, AL_FILTER_ADD_SOURCE, &s->auxBus[bus].fx[0]);
return (ALFxRef)&s->auxBus[bus].fx[0];
}

View file

@ -1 +1,5 @@
#include "synthInternals.h"
void alSynDelete(ALSynth* drvr) {
drvr->head = NULL;
}

View file

@ -0,0 +1,312 @@
#ifndef __audioInternals__
#define __audioInternals__
#include "libaudio.h"
/**
* filter message ids
*/
enum {
AL_FILTER_FREE_VOICE,
AL_FILTER_SET_SOURCE,
AL_FILTER_ADD_SOURCE,
AL_FILTER_ADD_UPDATE,
AL_FILTER_RESET,
AL_FILTER_SET_WAVETABLE,
AL_FILTER_SET_DRAM,
AL_FILTER_SET_PITCH,
AL_FILTER_SET_UNITY_PITCH,
AL_FILTER_START,
AL_FILTER_SET_STATE,
AL_FILTER_SET_VOLUME,
AL_FILTER_SET_PAN,
AL_FILTER_START_VOICE_ALT,
AL_FILTER_START_VOICE,
AL_FILTER_STOP_VOICE,
AL_FILTER_SET_FXAMT
};
#define AL_MAX_RSP_SAMPLES 160
/**
* buffer locations based on AL_MAX_RSP_SAMPLES
*/
#define AL_DECODER_IN 0x000
#define AL_RESAMPLER_OUT 0x000
#define AL_TEMP_0 0x000
#define AL_DECODER_OUT 0x140
#define AL_TEMP_1 0x140
#define AL_TEMP_2 0x280
#define AL_MAIN_L_OUT 0x440
#define AL_MAIN_R_OUT 0x580
#define AL_AUX_L_OUT 0x6C0
#define AL_AUX_R_OUT 0x800
/**
* filter types
*/
enum {
AL_ADPCM,
AL_RESAMPLE,
AL_BUFFER,
AL_SAVE,
AL_ENVMIX,
AL_FX,
AL_AUXBUS,
AL_MAINBUS
};
typedef struct ALParam_s {
struct ALParam_s* next;
s32 delta;
s16 type;
union {
f32 f;
s32 i;
} data;
union {
f32 f;
s32 i;
} moredata;
union {
f32 f;
s32 i;
} stillmoredata;
union {
f32 f;
s32 i;
} yetstillmoredata;
} ALParam;
typedef struct {
struct ALParam_s* next;
s32 delta;
s16 type;
s16 unity; // disable resampler
f32 pitch;
s16 volume;
ALPan pan;
u8 fxMix;
s32 samples;
struct ALWaveTable_s* wave;
} ALStartParamAlt;
typedef struct {
struct ALParam_s* next;
s32 delta;
s16 type;
s16 unity; // disable resampler
struct ALWaveTable_s* wave;
} ALStartParam;
typedef struct {
struct ALParam_s* next;
s32 delta;
s16 type;
struct PVoice_s* pvoice;
} ALFreeParam;
typedef Acmd* (*ALCmdHandler)(void*, s16*, s32, s32, Acmd*);
typedef s32 (*ALSetParam)(void*, s32, void*);
typedef struct ALFilter_s {
struct ALFilter_s* source;
ALCmdHandler handler;
ALSetParam setParam;
s16 inp;
s16 outp;
s32 type;
} ALFilter;
void alFilterNew(ALFilter* f, ALCmdHandler h, ALSetParam s, s32 type);
// Depends on number of subframes per frame and loop length
#define AL_MAX_ADPCM_STATES 3
typedef struct {
ALFilter filter;
ADPCM_STATE* state;
ADPCM_STATE* lstate;
ALRawLoop loop;
struct ALWaveTable_s* table;
s32 bookSize;
ALDMAproc dma;
void* dmaState;
s32 sample;
s32 lastsam;
s32 first;
s32 memin;
} ALLoadFilter;
void alLoadNew(ALLoadFilter* f, ALDMANew dmaNew, ALHeap* hp);
Acmd* alAdpcmPull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p);
Acmd* alRaw16Pull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p);
s32 alLoadParam(void* filter, s32 paramID, void* param);
typedef struct ALResampler_s {
ALFilter filter;
RESAMPLE_STATE* state;
f32 ratio;
s32 upitch;
f32 delta;
s32 first;
ALParam* ctrlList;
ALParam* ctrlTail;
s32 motion;
} ALResampler;
typedef struct {
s16 fc;
s16 fgain;
union {
s16 fccoef[16];
s64 force_aligned;
} fcvec;
POLEF_STATE* fstate;
s32 first;
} ALLowPass;
typedef struct {
u32 input;
u32 output;
s16 ffcoef;
s16 fbcoef;
s16 gain;
f32 rsinc;
f32 rsval;
s32 rsdelta;
f32 rsgain;
ALLowPass* lp;
ALResampler* rs;
} ALDelay;
typedef s32 (*ALSetFXParam)(void*, s32, void*);
typedef struct {
struct ALFilter_s filter;
s16* base;
s16* input;
u32 length;
ALDelay* delay;
u8 section_count;
ALSetFXParam paramHdl;
} ALFx;
void alFxNew(ALFx* r, ALSynConfig* c, ALHeap* hp);
Acmd* alFxPull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p);
s32 alFxParam(void* filter, s32 paramID, void* param);
s32 alFxParamHdl(void* filter, s32 paramID, void* param);
#define AL_MAX_MAIN_BUS_SOURCES 1
typedef struct ALMainBus_s {
ALFilter filter;
s32 sourceCount;
s32 maxSources;
ALFilter** sources;
} ALMainBus;
void alMainBusNew(ALMainBus* m, void* sources, s32 maxSources);
Acmd* alMainBusPull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p);
s32 alMainBusParam(void* filter, s32 paramID, void* param);
#define AL_MAX_AUX_BUS_SOURCES 8
#define AL_MAX_AUX_BUS_FX 1
typedef struct ALAuxBus_s {
ALFilter filter;
s32 sourceCount;
s32 maxSources;
ALFilter** sources;
ALFx fx[AL_MAX_AUX_BUS_FX];
} ALAuxBus;
void alAuxBusNew(ALAuxBus* m, void* sources, s32 maxSources);
Acmd* alAuxBusPull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p);
s32 alAuxBusParam(void* filter, s32 paramID, void* param);
void alResampleNew(ALResampler* r, ALHeap* hp);
Acmd* alResamplePull(void* filter, s16* outp, s32 outCnt, s32 sampleOffset, Acmd* p);
s32 alResampleParam(void* filter, s32 paramID, void* param);
typedef struct ALSave_s {
ALFilter filter;
s32 dramout;
s32 first;
} ALSave;
void alSaveNew(ALSave* f);
Acmd* alSavePull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p);
s32 alSaveParam(void* filter, s32 paramID, void* param);
typedef struct ALEnvMixer_s {
ALFilter filter;
ENVMIX_STATE* state;
s16 pan;
s16 volume;
s16 cvolL;
s16 cvolR;
s16 dryamt;
s16 wetamt;
u16 lratl;
s16 lratm;
s16 ltgt;
u16 rratl;
s16 rratm;
s16 rtgt;
s32 delta;
s32 segEnd;
s32 first;
ALParam* ctrlList;
ALParam* ctrlTail;
ALFilter** sources;
s32 motion;
} ALEnvMixer;
void alEnvmixerNew(ALEnvMixer* e, ALHeap* hp);
Acmd* alEnvmixerPull(void* filter, s16* outp, s32 outCount, s32 sampleOffset, Acmd* p);
s32 alEnvmixerParam(void* filter, s32 paramID, void* param);
/**
* heap stuff
*/
typedef struct {
s32 magic; // check structure integrety
s32 size; // size of this allocated block
u8* file; // file that this alloc was called from
s32 line; // line that it was called from
s32 count; // heap call number
s32 pad0;
s32 pad1;
s32 pad2; // Make it 32 bytes
} HeapInfo;
// DCache line size (-1)
#define AL_CACHE_ALIGN 15
/**
* synth stuff
*/
typedef struct PVoice_s {
ALLink node;
struct ALVoice_s* vvoice;
ALFilter* channelKnob;
ALLoadFilter decoder;
ALResampler resampler;
ALEnvMixer envmixer;
s32 offset;
} PVoice;
// prototypes for private driver functions
ALParam* __allocParam(void);
void __freeParam(ALParam* param);
void _freePVoice(ALSynth* drvr, PVoice* pvoice);
void _collectPVoices(ALSynth* drvr);
s32 _timeToSamples(ALSynth* synth, s32 micros);
ALMicroTime _samplesToTime(ALSynth* synth, s32 samples);
void _init_lpfilter(ALLowPass* lp);
#endif

View file

@ -1 +1,219 @@
#include "synthInternals.h"
#ifndef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#endif
static s32 __nextSampleTime(ALSynth* drvr, ALPlayer** client);
static s32 _timeToSamplesNoRound(ALSynth* synth, s32 micros);
void alSynNew(ALSynth* drvr, ALSynConfig* c) {
s32 i;
ALVoice* vv;
PVoice* pv;
ALVoice* vvoices;
PVoice* pvoices;
ALHeap* hp = c->heap;
ALSave* save;
ALFilter* sources;
ALParam* params;
ALParam* paramPtr;
drvr->head = NULL;
drvr->numPVoices = c->maxPVoices;
drvr->curSamples = 0;
drvr->paramSamples = 0;
drvr->outputRate = c->outputRate;
drvr->maxOutSamples = AL_MAX_RSP_SAMPLES;
drvr->dma = (ALDMANew)c->dmaproc;
save = alHeapAlloc(hp, 1, sizeof(ALSave));
alSaveNew(save);
drvr->outputFilter = &save->filter;
// allocate and initialize the auxilliary effects bus. at present we only support 1 effects bus.
drvr->auxBus = alHeapAlloc(hp, 1, sizeof(ALAuxBus));
drvr->maxAuxBusses = 1;
sources = alHeapAlloc(hp, c->maxPVoices, sizeof(ALFilter*));
alAuxBusNew(drvr->auxBus, sources, c->maxPVoices);
// allocate and initialize the main bus.
drvr->mainBus = alHeapAlloc(hp, 1, sizeof(ALMainBus));
sources = alHeapAlloc(hp, c->maxPVoices, sizeof(ALFilter*));
alMainBusNew(drvr->mainBus, sources, c->maxPVoices);
if (c->fxType != AL_FX_NONE) {
// Allocate an effect and set parameters
alSynAllocFX(drvr, 0, c, hp);
} else {
// Connect the aux bus to the main bus
alMainBusParam(drvr->mainBus, AL_FILTER_ADD_SOURCE, &drvr->auxBus[0]);
}
// Build the physical voice lists
drvr->pFreeList.next = NULL;
drvr->pFreeList.prev = NULL;
drvr->pLameList.next = NULL;
drvr->pLameList.prev = NULL;
drvr->pAllocList.next = NULL;
drvr->pAllocList.prev = NULL;
pvoices = alHeapAlloc(hp, c->maxPVoices, sizeof(PVoice));
for (i = 0; i < c->maxPVoices; i++) {
pv = &pvoices[i];
alLink(&pv->node, &drvr->pFreeList);
pv->vvoice = NULL;
alLoadNew(&pv->decoder, drvr->dma, hp);
alLoadParam(&pv->decoder, AL_FILTER_SET_SOURCE, NULL);
alResampleNew(&pv->resampler, hp);
alResampleParam(&pv->resampler, AL_FILTER_SET_SOURCE, &pv->decoder);
alEnvmixerNew(&pv->envmixer, hp);
alEnvmixerParam(&pv->envmixer, AL_FILTER_SET_SOURCE, &pv->resampler);
alAuxBusParam(drvr->auxBus, AL_FILTER_ADD_SOURCE, &pv->envmixer);
pv->channelKnob = &pv->envmixer.filter;
}
alSaveParam(save, AL_FILTER_SET_SOURCE, drvr->mainBus);
// build the parameter update list
params = alHeapAlloc(hp, c->maxUpdates, sizeof(ALParam));
drvr->paramList = NULL;
for (i = 0; i < c->maxUpdates; i++) {
paramPtr = &params[i];
paramPtr->next = drvr->paramList;
drvr->paramList = paramPtr;
}
drvr->heap = hp;
}
/**
* slAudioFrame() is called every video frame, and is based on the video
* frame interrupt. It is assumed to be an accurate time source for the
* clients.
*/
Acmd* alAudioFrame(Acmd* cmdList, s32* cmdLen, s16* outBuf, s32 outLen) {
ALPlayer* client;
ALFilter* output;
ALSynth* drvr = &alGlobals->drvr;
s16 tmp = 0; // Starting buffer in DMEM
Acmd* cmdlEnd = cmdList;
Acmd* cmdPtr;
s32 nOut;
s16* lOutBuf = outBuf;
if (drvr->head == NULL) {
// nothing to do
*cmdLen = 0;
return cmdList;
}
// run down list of clients and execute callback if needed this
// subframe. Here we do all the work for the frame at the
// start. Time offsets that occur before the next frame are
// executed "early".
//
// paramSamples = time of next parameter change.
// curSamples = current sample time.
// so paramSamples - curSamples is the time until the next parameter change.
// if the next parameter change occurs within this frame time (outLen),
// then call back the client that contains the parameter change.
// Note, paramSamples must be rounded down to 16 sample boundary for use
// during the client handler.
for (drvr->paramSamples = __nextSampleTime(drvr, &client); drvr->paramSamples - drvr->curSamples < outLen;
drvr->paramSamples = __nextSampleTime(drvr, &client)) {
drvr->paramSamples &= ~0xF;
client->samplesLeft += _timeToSamplesNoRound(drvr, (*client->handler)(client));
}
// for safety's sake, always store paramSamples aligned to 16 sample boundary.
// this way, if an voice handler routine gets called outside the ALVoiceHandler
// routine (alSynAllocVoice) it will get timestamped with an aligned value and
// will be processed immediately next audio frame.
drvr->paramSamples &= ~0xF;
// Now build the command list in small chunks
while (outLen > 0) {
nOut = MIN(drvr->maxOutSamples, outLen);
// construct the command list for each physical voice by calling the head of the filter chain.
cmdPtr = cmdlEnd;
aSegment(cmdPtr++, 0, 0);
output = drvr->outputFilter;
(*output->setParam)(output, AL_FILTER_SET_DRAM, lOutBuf);
cmdlEnd = (*output->handler)(output, &tmp, nOut, drvr->curSamples, cmdPtr);
outLen -= nOut;
lOutBuf += nOut << 1; // For Stereo
drvr->curSamples += nOut;
}
*cmdLen = (s32)(cmdlEnd - cmdList);
_collectPVoices(drvr); // collect free physical voices
return cmdlEnd;
}
ALParam* __allocParam(void) {
ALParam* update = NULL;
ALSynth* drvr = &alGlobals->drvr;
if (drvr->paramList != NULL) {
update = drvr->paramList;
drvr->paramList = drvr->paramList->next;
update->next = NULL;
}
return update;
}
void __freeParam(ALParam* param) {
ALSynth* drvr = &alGlobals->drvr;
param->next = drvr->paramList;
drvr->paramList = param;
}
void _collectPVoices(ALSynth* drvr) {
ALLink* dl;
PVoice* pv;
while ((dl = drvr->pLameList.next) != NULL) {
pv = (PVoice*)dl;
alUnlink(&pv->node);
alLink(&pv->node, &drvr->pFreeList);
}
}
void _freePVoice(ALSynth* drvr, PVoice* pvoice) {
// move the voice from the allocated list to the lame list
alUnlink(&pvoice->node);
alLink(&pvoice->node, &drvr->pLameList);
}
static s32 _timeToSamplesNoRound(ALSynth* synth, s32 micros) {
// Add 0.5 to adjust the average affect of the truncation error produced by casting a float to an int.
f32 tmp = ((f32)micros) * synth->outputRate / 1000000.0 + 0.5;
return (s32)tmp;
}
s32 _timeToSamples(ALSynth* synth, s32 micros) {
return _timeToSamplesNoRound(synth, micros) & ~0xF;
}
static s32 __nextSampleTime(ALSynth* drvr, ALPlayer** client) {
ALMicroTime delta = 0x7FFFFFFF; // max delta for s32
ALPlayer* cl;
*client = NULL;
for (cl = drvr->head; cl != NULL; cl = cl->next) {
if (cl->samplesLeft - drvr->curSamples < delta) {
*client = cl;
delta = cl->samplesLeft - drvr->curSamples;
}
}
return (*client)->samplesLeft;
}

View file

@ -35,7 +35,7 @@
#include "cic6105.h"
#endif
#pragma increment_block_number "gc-eu:164 gc-eu-mq:164 gc-jp:164 gc-jp-ce:164 gc-jp-mq:164 gc-us:164 gc-us-mq:164" \
#pragma increment_block_number "gc-eu:163 gc-eu-mq:163 gc-jp:163 gc-jp-ce:163 gc-jp-mq:163 gc-us:163 gc-us-mq:163" \
"ntsc-1.0:121 ntsc-1.1:121 ntsc-1.2:121 pal-1.0:121 pal-1.1:121"
#define FLAGS ACTOR_FLAG_UPDATE_CULLING_DISABLED