mirror of
https://github.com/zeldaret/oot.git
synced 2025-01-15 12:47:04 +00:00
3e200769f1
* [ntsc-1.2] LoadFragment2 OK * Add insight about bssSize
209 lines
9.9 KiB
C
209 lines
9.9 KiB
C
/**
|
||
* @file loadfragment2_n64.c
|
||
*
|
||
* This file contains the routine responsible for runtime relocation of dynamically loadable code segments (overlays),
|
||
* see the description of Overlay_Relocate for details.
|
||
*
|
||
* @see Overlay_Relocate
|
||
*/
|
||
#include "global.h"
|
||
|
||
s32 gOverlayLogSeverity = 2;
|
||
|
||
// Extract MIPS register rs from an instruction word
|
||
#define MIPS_REG_RS(insn) (((insn) >> 0x15) & 0x1F)
|
||
|
||
// Extract MIPS register rt from an instruction word
|
||
#define MIPS_REG_RT(insn) (((insn) >> 0x10) & 0x1F)
|
||
|
||
// Extract MIPS jump target from an instruction word
|
||
#define MIPS_JUMP_TARGET(insn) (((insn)&0x03FFFFFF) << 2)
|
||
|
||
/**
|
||
* Performs runtime relocation of overlay files, loadable code segments.
|
||
*
|
||
* Overlays are expected to be loadable anywhere in direct-mapped cached (KSEG0) memory, with some appropriate
|
||
* alignment requirements; memory addresses in such code must be updated once loaded to execute properly.
|
||
* When compiled, overlays are given 'fake' KSEG0 RAM addresses larger than the total possible available main memory
|
||
* (>= 0x80800000), such addresses are referred to as Virtual RAM (VRAM) to distinguish them. When loading the overlay,
|
||
* the relocation table produced at compile time is consulted to determine where and how to update these VRAM addresses
|
||
* to correct RAM addresses based on the location the overlay was loaded at, enabling the code to execute at this
|
||
* address as if it were compiled to run at this address.
|
||
*
|
||
* Each relocation is represented by a packed 32-bit value, formatted in the following way:
|
||
* - [31:30] 2-bit section id, taking values from the `RelocSectionId` enum.
|
||
* - [29:24] 6-bit relocation type describing which relocation operation should be performed. Same as ELF32 MIPS.
|
||
* - [23: 0] 24-bit section-relative offset indicating where in the section to apply this relocation.
|
||
*
|
||
* @param allocatedRamAddress Memory address the binary was loaded at.
|
||
* @param ovlRelocs Overlay relocation section containing overlay section layout and runtime relocations.
|
||
* @param vramStart Virtual RAM address that the overlay was compiled at.
|
||
*/
|
||
void Overlay_Relocate(void* allocatedRamAddr, OverlayRelocationSection* ovlRelocs, void* vramStart) {
|
||
u32 sections[RELOC_SECTION_MAX];
|
||
u32* relocDataP;
|
||
u32 reloc;
|
||
uintptr_t relocatedAddress;
|
||
u32 i;
|
||
u32* luiInstRef;
|
||
u32 isLoNeg;
|
||
u32* regValP;
|
||
//! MIPS ELF relocation does not generally require tracking register values, so at first glance it appears this
|
||
//! register tracking was an unnecessary complication. However there is a bug in the IDO compiler that can cause
|
||
//! relocations to be emitted in the wrong order under rare circumstances when the compiler attempts to reuse a
|
||
//! previous HI16 relocation for a different LO16 relocation as an optimization. This register tracking is likely
|
||
//! a workaround to prevent improper matching of unrelated HI16 and LO16 relocations that would otherwise arise
|
||
//! due to the incorrect ordering.
|
||
u32* luiRefs[32];
|
||
u32 luiVals[32];
|
||
uintptr_t allocu32 = (uintptr_t)allocatedRamAddr;
|
||
uintptr_t vramu32 = (uintptr_t)vramStart;
|
||
|
||
if (gOverlayLogSeverity >= 3) {
|
||
osSyncPrintf("DoRelocation(%08x, %08x, %08x)\n", allocatedRamAddr, ovlRelocs, vramStart);
|
||
}
|
||
|
||
sections[RELOC_SECTION_NULL] = 0;
|
||
sections[RELOC_SECTION_TEXT] = allocu32;
|
||
sections[RELOC_SECTION_DATA] = allocu32 + ovlRelocs->textSize;
|
||
sections[RELOC_SECTION_RODATA] = sections[RELOC_SECTION_DATA] + ovlRelocs->dataSize;
|
||
|
||
for (i = 0; i < ovlRelocs->nRelocations; i++) {
|
||
// This will always resolve to a 32-bit aligned address as each section
|
||
// containing code or pointers must be aligned to at least 4 bytes and the
|
||
// MIPS ABI defines the offset of both 16-bit and 32-bit relocations to be
|
||
// the start of the 32-bit word containing the target.
|
||
reloc = ovlRelocs->relocations[i];
|
||
relocDataP = (u32*)(sections[RELOC_SECTION(reloc)] + RELOC_OFFSET(reloc));
|
||
|
||
switch (RELOC_TYPE_MASK(reloc)) {
|
||
case R_MIPS_32 << RELOC_TYPE_SHIFT:
|
||
// Handles 32-bit address relocation, used for things such as jump tables and pointers in data.
|
||
// Just relocate the full address
|
||
|
||
// Check address is valid for relocation
|
||
if ((*relocDataP & 0x0F000000) == 0) {
|
||
*relocDataP = *relocDataP - vramu32 + allocu32;
|
||
} else if (gOverlayLogSeverity >= 3) {
|
||
osSyncPrintf(T("セグメントポインタ32です %08x\n", "Segment pointer 32 %08x\n"),
|
||
*relocDataP - vramu32);
|
||
}
|
||
break;
|
||
|
||
case R_MIPS_26 << RELOC_TYPE_SHIFT:
|
||
// Handles 26-bit address relocation, used for jumps and jals.
|
||
// Extract the address from the target field of the J-type MIPS instruction.
|
||
// Relocate the address and update the instruction.
|
||
|
||
if (1) {
|
||
*relocDataP =
|
||
(*relocDataP & 0xFC000000) |
|
||
(((PHYS_TO_K0(MIPS_JUMP_TARGET(*relocDataP)) - vramu32 + allocu32) & 0x0FFFFFFF) >> 2);
|
||
} else if (gOverlayLogSeverity >= 3) {
|
||
osSyncPrintf(T("セグメントポインタ26です %08x\n", "Segment pointer 26 %08x\n"),
|
||
PHYS_TO_K0(MIPS_JUMP_TARGET(*relocDataP)) - vramu32);
|
||
}
|
||
break;
|
||
|
||
case R_MIPS_HI16 << RELOC_TYPE_SHIFT:
|
||
// Handles relocation for a hi/lo pair, part 1.
|
||
// Store the reference to the LUI instruction (hi) using the `rt` register of the instruction.
|
||
// This will be updated later in the `R_MIPS_LO16` section.
|
||
|
||
luiRefs[(*relocDataP >> 0x10) & 0x1F] = relocDataP;
|
||
luiVals[(*relocDataP >> 0x10) & 0x1F] = *relocDataP;
|
||
break;
|
||
|
||
case R_MIPS_LO16 << RELOC_TYPE_SHIFT:
|
||
// Handles relocation for a hi/lo pair, part 2.
|
||
// Grab the stored LUI (hi) from the `R_MIPS_HI16` section using the `rs` register of the instruction.
|
||
// The full address is calculated, relocated, and then used to update both the LUI and lo instructions.
|
||
// If the lo part is negative, add 1 to the LUI value.
|
||
// Note: The lo instruction is assumed to have a signed immediate.
|
||
|
||
luiInstRef = luiRefs[(*relocDataP >> 0x15) & 0x1F];
|
||
regValP = &luiVals[(*relocDataP >> 0x15) & 0x1F];
|
||
|
||
// Check address is valid for relocation
|
||
if ((((*luiInstRef << 0x10) + (s16)*relocDataP) & 0x0F000000) == 0) {
|
||
relocatedAddress = ((*regValP << 0x10) + (s16)*relocDataP) - vramu32 + allocu32;
|
||
isLoNeg = (relocatedAddress & 0x8000) ? 1 : 0;
|
||
*luiInstRef = (*luiInstRef & 0xFFFF0000) | (((relocatedAddress >> 0x10) & 0xFFFF) + isLoNeg);
|
||
*relocDataP = (*relocDataP & 0xFFFF0000) | (relocatedAddress & 0xFFFF);
|
||
} else if (gOverlayLogSeverity >= 3) {
|
||
osSyncPrintf(T("セグメントポインタ16です %08x %08x %08x\n", "Segment pointer 16 %08x %08x %08x\n"),
|
||
((*luiInstRef << 0x10) + (s16)*relocDataP) - vramu32, *luiInstRef, *relocDataP);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
size_t Overlay_Load(uintptr_t vromStart, uintptr_t vromEnd, void* vramStart, void* vramEnd, void* allocatedRamAddr) {
|
||
s32 pad[2];
|
||
s32 size = vromEnd - vromStart;
|
||
uintptr_t end;
|
||
OverlayRelocationSection* ovlRelocs;
|
||
|
||
if (gOverlayLogSeverity >= 3) {
|
||
osSyncPrintf(
|
||
T("\nダイナミックリンクファンクションのロードを開始します\n", "\nStart loading dynamic link function\n"));
|
||
}
|
||
|
||
size = vromEnd - vromStart;
|
||
end = (uintptr_t)allocatedRamAddr + size;
|
||
|
||
if (gOverlayLogSeverity >= 3) {
|
||
osSyncPrintf(T("TEXT,DATA,RODATA+relをDMA転送します(%08x-%08x)\n",
|
||
"DMA transfer TEXT, DATA, RODATA+rel (%08x-%08x)\n"),
|
||
allocatedRamAddr, end);
|
||
}
|
||
|
||
DmaMgr_RequestSync(allocatedRamAddr, vromStart, size);
|
||
|
||
// The overlay file is expected to contain a 32-bit offset from the end of the file to the start of the
|
||
// relocation section.
|
||
ovlRelocs = (OverlayRelocationSection*)(end - ((s32*)end)[-1]);
|
||
|
||
if (gOverlayLogSeverity >= 3) {
|
||
osSyncPrintf("TEXT(%08x), DATA(%08x), RODATA(%08x), BSS(%08x)\n", ovlRelocs->textSize, ovlRelocs->dataSize,
|
||
ovlRelocs->rodataSize, (s32)ovlRelocs->bssSize);
|
||
}
|
||
|
||
if (gOverlayLogSeverity >= 3) {
|
||
osSyncPrintf(T("リロケーションします\n", "I will relocate\n"));
|
||
}
|
||
|
||
Overlay_Relocate(allocatedRamAddr, ovlRelocs, vramStart);
|
||
|
||
// Casts suggest bssSize struct variable was an s32, but needs to be a u32 for the GC versions
|
||
if ((s32)ovlRelocs->bssSize != 0) {
|
||
if (gOverlayLogSeverity >= 3) {
|
||
osSyncPrintf(T("BSS領域をクリアします(%08x-%08x)\n", "Clear BSS area (%08x-%08x)\n"), end,
|
||
end + (s32)ovlRelocs->bssSize);
|
||
}
|
||
bzero((void*)end, (s32)ovlRelocs->bssSize);
|
||
}
|
||
|
||
size = (uintptr_t)vramEnd - (uintptr_t)vramStart;
|
||
|
||
osWritebackDCache(allocatedRamAddr, size);
|
||
osInvalICache(allocatedRamAddr, size);
|
||
|
||
if (gOverlayLogSeverity >= 3) {
|
||
osSyncPrintf(T("ダイナミックリンクファンクションのロードを終了します\n\n",
|
||
"Finish loading the dynamic link function\n\n"));
|
||
}
|
||
|
||
return size;
|
||
}
|
||
|
||
void* Overlay_AllocateAndLoad(uintptr_t vromStart, uintptr_t vromEnd, void* vramStart, void* vramEnd) {
|
||
void* allocatedRamAddr = SYSTEM_ARENA_MALLOC_R((intptr_t)vramEnd - (intptr_t)vramStart, "../loadfragment2.c", 31);
|
||
|
||
if (allocatedRamAddr != NULL) {
|
||
Overlay_Load(vromStart, vromEnd, vramStart, vramEnd, allocatedRamAddr);
|
||
}
|
||
|
||
return allocatedRamAddr;
|
||
}
|