1
0
Fork 0
mirror of https://github.com/zeldaret/oot.git synced 2024-12-02 07:46:01 +00:00
oot/src/code/sched.c
fig02 eb0a82c513
Document HREG debugging system (#1351)
* progress

* progress

* change

* named most

* name prerender things

* fix and format

* play prefix

* address most comments (still a few more things to do)

* fix error

* reword input test comments

* some more

* rework env draw flags

* add hilite

* merge and format

* init to proper values

* rename env draw flag names

* 7 to 6

* more small changes
2022-11-26 15:22:01 -05:00

670 lines
24 KiB
C

/**
* @file sched.c
*
* This file implements a cooperative scheduler for managing tasks that run on the RSP and RDP
* asynchronously such as graphics and audio processing. Tasks are prepared and sent to it from
* other threads, where it is placed in a queue until the necessary resources are available. Tasks
* are usually ran in the order they are received, with one exception described below. Tasks can
* also request, through flags, whether the scheduler should swap the active framebuffer once the
* task completes.
* Together with irqmgr.c, these systems implement the libultra video and task scheduling model from
* the libultra "sched" module. Notably, the original sched module supports a wider range of ways to
* communicate with the RDP, while the Zelda 64 implementation only allows the RSP microcode to send
* commands to the RDP. The Zelda 64 implementation also has more complex behavior involving the
* framebuffers.
*
* There are four task types supported:
*
* M_NULTASK
* "NULL" tasks.
* Tasks of this type don't perform any operations, it can be used to "flush" the task queue. Threads
* can wait for this task to complete to ensure there are no more tasks queued in the scheduler.
*
* M_GFXTASK
* Graphics Processing tasks.
* Only these tasks can make use of the RDP.
*
* M_AUDTASK
* Audio Processing tasks.
* These tasks have a higher "priority" than other tasks. If an audio task is enqueued and another
* task is currently running, the scheduler will signal to the running task that it should "yield"
* the RSP to the audio task. The running task will save its current state and stop running, allowing
* the scheduler to send the audio task. This ensures that audio data is always available to be consumed
* by the audio DAC even if another task such as graphics is running slow, avoiding undesirable sound
* artifacts. This is the meaning of "cooperative" scheduler, the current task must acknowledge the
* yield request rather than be immediately interrupted as it would be in a preemptive scheduler.
*
* M_NJPEGTASK
* JPEG to RGBA16 decoding tasks.
*
* @see irqmgr.c
*/
#include "global.h"
#define RSP_DONE_MSG 667
#define RDP_DONE_MSG 668
#define NOTIFY_MSG 670 // original name: ENTRY_MSG
vs32 sLogScheduler = false;
OSTime sRSPGfxTimeStart;
OSTime sRSPAudioTimeStart;
OSTime sRSPOtherTimeStart;
OSTime sRDPTimeStart;
/**
* Set the current framebuffer to the swapbuffer pointed to by the provided cfb
*/
void Sched_SwapFrameBufferImpl(CfbInfo* cfbInfo) {
u16 width;
LogUtils_CheckValidPointer("cfbinfo->swapbuffer", cfbInfo->swapBuffer, "../sched.c", 340);
if (cfbInfo->swapBuffer != NULL) {
// Register the swapbuffer to display on next VI
osViSwapBuffer(cfbInfo->swapBuffer);
cfbInfo->updateTimer = cfbInfo->updateRate;
if (sLogScheduler) {
osSyncPrintf("osViSwapBuffer %08x %08x %08x\n", osViGetCurrentFramebuffer(), osViGetNextFramebuffer(),
(cfbInfo != NULL) ? cfbInfo->swapBuffer : NULL);
}
width = (cfbInfo->viMode != NULL) ? cfbInfo->viMode->comRegs.width : (u32)gScreenWidth;
Fault_SetFrameBuffer(cfbInfo->swapBuffer, width, 16);
if (R_HREG_MODE == HREG_MODE_SCHED && R_SCHED_INIT != HREG_MODE_SCHED) {
R_SCHED_TOGGLE_SPECIAL_FEATURES = 0;
R_SCHED_GAMMA_ON = 0;
R_SCHED_DITHER_FILTER_ON = 1;
R_SCHED_GAMMA_DITHER_ON = 0;
R_SCHED_DIVOT_ON = 1;
// these regs are not used in this mode
HREG(86) = 0;
HREG(87) = 0;
HREG(88) = 0;
HREG(89) = 0;
HREG(90) = 0;
HREG(91) = 0;
HREG(92) = 0;
HREG(93) = 0;
HREG(94) = 0;
R_SCHED_INIT = HREG_MODE_SCHED;
}
if (R_HREG_MODE == HREG_MODE_SCHED && R_SCHED_TOGGLE_SPECIAL_FEATURES == 2) {
osViSetSpecialFeatures(R_SCHED_GAMMA_ON ? OS_VI_GAMMA_ON : OS_VI_GAMMA_OFF);
osViSetSpecialFeatures(R_SCHED_DITHER_FILTER_ON ? OS_VI_DITHER_FILTER_ON : OS_VI_DITHER_FILTER_OFF);
osViSetSpecialFeatures(R_SCHED_GAMMA_DITHER_ON ? OS_VI_GAMMA_DITHER_ON : OS_VI_GAMMA_DITHER_OFF);
osViSetSpecialFeatures(R_SCHED_DIVOT_ON ? OS_VI_DIVOT_ON : OS_VI_DIVOT_OFF);
}
}
cfbInfo->unk_10 = 0;
}
void Sched_SwapFrameBuffer(Scheduler* sc, CfbInfo* cfbInfo) {
if (sc->isFirstSwap) {
sc->isFirstSwap = false;
if (gIrqMgrResetStatus == IRQ_RESET_STATUS_IDLE) {
ViConfig_UpdateVi(false);
}
}
Sched_SwapFrameBufferImpl(cfbInfo);
}
void Sched_HandlePreNMI(Scheduler* sc) {
OSTime now;
if (sc->curRSPTask != NULL) {
now = osGetTime();
if (sc->curRSPTask->framebuffer == NULL) {
// audio and jpeg tasks end up in here
LOG_TIME("(((u64)(now - audio_rsp_start_time)*(1000000LL/15625LL))/((62500000LL*3/4)/15625LL))",
OS_CYCLES_TO_USEC(now - sRSPAudioTimeStart), "../sched.c", 421);
} else if (OS_CYCLES_TO_USEC(now - sRSPGfxTimeStart) > 1000000 ||
OS_CYCLES_TO_USEC(now - sRDPTimeStart) > 1000000) {
// More than 1 second since the RSP or RDP tasks began, halt the RSP and RDP
RcpUtils_Reset();
// Manually send RSP/RDP done messages to the scheduler interrupt queue if appropriate
if (sc->curRSPTask != NULL) {
LOG_TIME("(((u64)(now - graph_rsp_start_time)*(1000000LL/15625LL))/((62500000LL*3/4)/15625LL))",
OS_CYCLES_TO_USEC(now - sRSPGfxTimeStart), "../sched.c", 427);
osSendMesg(&sc->interruptQueue, (OSMesg)RSP_DONE_MSG, OS_MESG_NOBLOCK);
}
if (sc->curRDPTask != NULL) {
LOG_TIME("(((u64)(now - rdp_start_time)*(1000000LL/15625LL))/((62500000LL*3/4)/15625LL))",
OS_CYCLES_TO_USEC(now - sRDPTimeStart), "../sched.c", 431);
osSendMesg(&sc->interruptQueue, (OSMesg)RDP_DONE_MSG, OS_MESG_NOBLOCK);
}
}
}
}
void Sched_HandleNMI(Scheduler* sc) {
// black the screen and reset the VI y scale just in time for NMI reset
ViConfig_UpdateVi(true);
}
/**
* Enqueue a task to either the audio task list or the gfx task list
*/
void Sched_QueueTask(Scheduler* sc, OSScTask* task) {
s32 type = task->list.t.type;
ASSERT((type == M_AUDTASK) || (type == M_GFXTASK) || (type == M_NJPEGTASK) || (type == M_NULTASK),
"(type == M_AUDTASK) || (type == M_GFXTASK) || (type == M_NJPEGTASK) || (type == M_NULTASK)", "../sched.c",
463);
if (type == M_AUDTASK) {
if (sLogScheduler) {
// "You have entered an audio task"
osSyncPrintf("オーディオタスクをエントリしました\n");
}
// Add to audio queue
if (sc->audioListTail != NULL) {
sc->audioListTail->next = task;
} else {
sc->audioListHead = task;
}
sc->audioListTail = task;
// Set audio flag
sc->doAudio = true;
} else {
if (sLogScheduler) {
// "Entered graph task"
osSyncPrintf("グラフタスクをエントリしました\n");
}
// Add to graphics queue
if (sc->gfxListTail != NULL) {
sc->gfxListTail->next = task;
} else {
sc->gfxListHead = task;
}
sc->gfxListTail = task;
}
task->next = NULL;
task->state = task->flags & OS_SC_RCP_MASK;
}
void Sched_Yield(Scheduler* sc) {
if (!(sc->curRSPTask->state & OS_SC_YIELD)) {
// Not already been asked to yield
ASSERT(sc->curRSPTask->list.t.type != M_AUDTASK, "sc->curRSPTask->list.t.type != M_AUDTASK", "../sched.c", 496);
sc->curRSPTask->state |= OS_SC_YIELD;
// Send yield request
osSpTaskYield();
if (sLogScheduler) {
osSyncPrintf("%08d:osSpTaskYield\n", (u32)(OS_CYCLES_TO_USEC(osGetTime())));
}
}
}
/**
* Check if the framebuffer the gfx task wants to use is allowed
*/
OSScTask* Sched_GfxTaskFramebufferValid(Scheduler* sc, OSScTask* task) {
if (task == NULL) {
return NULL;
}
// If there are pending swaps, wait until there are none (within 2 VI)
if (sc->pendingSwapBuf1 != NULL) {
if (0) {
ASSERT(sc->pendingSwapBuf1 != NULL, "sc->pending_swapbuffer1", "../sched.c", UNK_LINE);
}
return NULL;
}
if (sc->pendingSwapBuf2 != NULL) {
if (0) {
ASSERT(sc->pendingSwapBuf2 != NULL, "sc->pending_swapbuffer2", "../sched.c", UNK_LINE);
}
return NULL;
}
// If the task's framebuffer is one of the pending swaps or NULL.
// In conjunction with the above, these checks are redundant as the pending swap buffers will only be
// NULL here, so these could have been simplified to checks for the task's framebuffer being non-NULL.
if (((sc->pendingSwapBuf2 != NULL) ? sc->pendingSwapBuf2->swapBuffer : NULL) == task->framebuffer->framebuffer) {
return NULL;
}
if (((sc->pendingSwapBuf1 != NULL) ? sc->pendingSwapBuf1->swapBuffer : NULL) == task->framebuffer->framebuffer) {
return NULL;
}
// If the task's framebuffer is the current framebuffer, abort
if (osViGetCurrentFramebuffer() == task->framebuffer->framebuffer) {
return NULL;
}
return task;
}
/**
* Schedules the next tasks to run on the RSP and RDP
*
* @param sc Scheduler
* @param spTaskOut Next task to run on the RSP
* @param dpTaskOut Next task to run on the RDP
* @param state Bits containing whether the RSP and RDP are currently in use
* @return Bits containing whether the RSP and RDP will be in use after starting the next tasks
*/
s32 Sched_Schedule(Scheduler* sc, OSScTask** spTaskOut, OSScTask** dpTaskOut, s32 state) {
s32 nextState = state;
OSScTask* gfxTask = sc->gfxListHead;
OSScTask* audioTask = sc->audioListHead;
if (sc->doAudio && (state & OS_SC_SP)) {
// Audio Task, RSP is available
// Return next audio task
*spTaskOut = audioTask;
// RSP required
nextState &= ~OS_SC_SP;
//! @bug If there is more than one audio task in the queue at any time, unsetting doAudio here
//! will cause only one task to be processed until a new audio task is enqueued. In practice, audio
//! tasks are sent infrequently enough that there are never two audio tasks in the queue.
sc->doAudio = false;
// Advance task queue
sc->audioListHead = sc->audioListHead->next;
if (sc->audioListHead == NULL) {
sc->audioListTail = NULL;
}
} else if (gfxTask != NULL) {
// GFX Task
if ((gfxTask->state & OS_SC_YIELDED) || !(gfxTask->flags & OS_SC_NEEDS_RDP)) {
// If this is a yielded GFX task, or the RDP is not needed for this GFX task
if (state & OS_SC_SP) {
// If the RSP is available, return next graphics task
*spTaskOut = gfxTask;
// RSP required
nextState &= ~OS_SC_SP;
// Advance task queue
sc->gfxListHead = sc->gfxListHead->next;
if (sc->gfxListHead == NULL) {
sc->gfxListTail = NULL;
}
}
} else if (state == (OS_SC_SP | OS_SC_DP)) {
// Both the RSP and RDP are available, check requested framebuffer
if (gfxTask->framebuffer == NULL || Sched_GfxTaskFramebufferValid(sc, gfxTask) != NULL) {
// Return next graphics task
*spTaskOut = *dpTaskOut = gfxTask;
// RSP and RDP both required
nextState &= ~(OS_SC_SP | OS_SC_DP);
// Advance task queue
sc->gfxListHead = sc->gfxListHead->next;
if (sc->gfxListHead == NULL) {
sc->gfxListTail = NULL;
}
}
}
}
return nextState;
}
/**
* Sets the next framebuffer to the framebuffer associated to `task`.
* If there is no current buffer or it is time to swap, this buffer will be swapped to
* immediately, otherwise it will be swapped to later in Sched_HandleRetrace.
*
* @see Sched_HandleRetrace
*/
void Sched_SetNextFramebufferFromTask(Scheduler* sc, OSScTask* task) {
if (sc->pendingSwapBuf1 == NULL) {
sc->pendingSwapBuf1 = task->framebuffer;
LogUtils_CheckValidPointer("sc->pending_swapbuffer1", sc->pendingSwapBuf1, "../sched.c", 618);
if (sc->curBuf == NULL || sc->curBuf->updateTimer <= 0) {
Sched_SwapFrameBuffer(sc, task->framebuffer);
}
}
}
/**
* Checks if the task is done, i.e. it is no longer running on either the RSP or RDP.
* If so, send a message to the task's message queue if there is one, and swap the framebuffer
* if required.
*/
u32 Sched_TaskComplete(Scheduler* sc, OSScTask* task) {
// Check that the task has released both the RSP and RDP. For graphics tasks that use both,
// the RSP will typically finish before the RDP, as the RSP can halt while the RDP is still
// working through the command buffer.
if (!(task->state & (OS_SC_DP | OS_SC_SP))) {
// Send a message to the notify queue if there is one
if (task->msgQueue != NULL) {
osSendMesg(task->msgQueue, task->msg, OS_MESG_BLOCK);
}
// Swap the framebuffer if needed
if (task->flags & OS_SC_SWAPBUFFER) {
Sched_SetNextFramebufferFromTask(sc, task);
}
return true;
}
return false;
}
/**
* Runs the next tasks. The scheduler doesn't support running RDP tasks without
* passthrough via the RSP, if there is no RSP task to run then the RDP task will
* also do nothing.
*/
void Sched_RunTask(Scheduler* sc, OSScTask* spTask, OSScTask* dpTask) {
ASSERT(sc->curRSPTask == NULL, "sc->curRSPTask == NULL", "../sched.c", 663);
// If there is no RSP task there's nothing to do.
if (spTask != NULL) {
if (spTask->list.t.type == M_NULTASK) {
// NULTASK is a sync/flush operation, clear current RSP and RDP tasks
// and unset flags for this task
if (spTask->flags & OS_SC_NEEDS_RSP) {
spTask->state &= ~OS_SC_SP;
sc->curRSPTask = NULL;
}
if (spTask->flags & OS_SC_NEEDS_RDP) {
spTask->state &= ~OS_SC_DP;
sc->curRDPTask = NULL;
}
// Finalize
Sched_TaskComplete(sc, spTask);
return;
}
spTask->state &= ~(OS_SC_YIELD | OS_SC_YIELDED);
// Write back data cache and load the OSTask into the RSP
osWritebackDCacheAll();
osSpTaskLoad(&spTask->list);
// Begin profiling timers
if (spTask->list.t.type == M_AUDTASK) {
sRSPAudioTimeStart = osGetTime();
} else if (spTask->list.t.type == M_GFXTASK) {
sRSPGfxTimeStart = osGetTime();
} else {
sRSPOtherTimeStart = osGetTime();
}
// Run RSP
osSpTaskStartGo(&spTask->list);
if (sLogScheduler) {
osSyncPrintf(
"%08d:osSpTaskStartGo(%08x) %s\n", (u32)OS_CYCLES_TO_USEC(osGetTime()), &spTask->list,
(spTask->list.t.type == M_AUDTASK ? "AUDIO" : (spTask->list.t.type == M_GFXTASK ? "GRAPH" : "OTHER")));
}
// Set currently running RSP task
sc->curRSPTask = spTask;
// If the task also uses the RDP, set current running RDP task
if (spTask == dpTask && sc->curRDPTask == NULL) {
sc->curRDPTask = dpTask;
sRDPTimeStart = sRSPGfxTimeStart;
}
}
}
/**
* Runs when the scheduler has received a notification, either from another thread or
* on VI Retrace. Tasks that have been sent to it will be enqueued onto the audio or
* gfx task queue and one may be ran if the RSP is available.
*/
void Sched_HandleNotification(Scheduler* sc) {
OSScTask* nextRSP = NULL;
OSScTask* nextRDP = NULL;
s32 state;
OSScTask* task = NULL;
// Enqueue any tasks sent by other threads
while (osRecvMesg(&sc->cmdQueue, (OSMesg*)&task, OS_MESG_NOBLOCK) != -1) {
Sched_QueueTask(sc, task);
}
// If an audio task has been enqueued and there is currently an RSP task running,
// signal to the currently running task to yield the RSP so that the audio task may
// be ran as soon as possible.
if (sc->doAudio && sc->curRSPTask != NULL) {
if (sLogScheduler) {
osSyncPrintf("[YIELD B]");
}
Sched_Yield(sc);
return;
}
// Run next task in the queue if there is one and the necessary resources are available
state = ((sc->curRSPTask == NULL) << 1) | (sc->curRDPTask == NULL);
if (Sched_Schedule(sc, &nextRSP, &nextRDP, state) != state) {
Sched_RunTask(sc, nextRSP, nextRDP);
}
if (sLogScheduler) {
osSyncPrintf("EN sc:%08x sp:%08x dp:%08x state:%x\n", sc, nextRSP, nextRDP, state);
}
}
void Sched_HandleRetrace(Scheduler* sc) {
if (sLogScheduler) {
osSyncPrintf("%08d:scHandleRetrace %08x\n", (u32)OS_CYCLES_TO_USEC(osGetTime()), osViGetCurrentFramebuffer());
}
ViConfig_UpdateBlack();
sc->retraceCount++;
// Retrace handlers run after VI context swap. The last swap buffer may now be the current buffer.
if (osViGetCurrentFramebuffer() == ((sc->pendingSwapBuf1 != NULL) ? sc->pendingSwapBuf1->swapBuffer : NULL)) {
if (sc->curBuf != NULL) {
sc->curBuf->unk_10 = 0;
}
if (sc->pendingSwapBuf1 != NULL) {
sc->pendingSwapBuf1->unk_10 = 0;
}
// Advance buffers
sc->curBuf = sc->pendingSwapBuf1;
sc->pendingSwapBuf1 = sc->pendingSwapBuf2;
sc->pendingSwapBuf2 = NULL;
}
if (sc->curBuf != NULL) {
// Swap the framebuffer when the update timer runs out
if (sc->curBuf->updateTimer > 0) {
sc->curBuf->updateTimer--;
}
if (sc->curBuf->updateTimer <= 0 && sc->pendingSwapBuf1 != NULL) {
Sched_SwapFrameBuffer(sc, sc->pendingSwapBuf1);
}
}
if (sLogScheduler) {
osSyncPrintf("%08x %08x %08x %d\n", osViGetCurrentFramebuffer(), osViGetNextFramebuffer(),
(sc->pendingSwapBuf1 != NULL) ? sc->pendingSwapBuf1->swapBuffer : NULL,
(sc->curBuf != NULL) ? sc->curBuf->updateTimer : 0);
}
// Run the notification handler to enqueue any waiting tasks and possibly run one
Sched_HandleNotification(sc);
}
/**
* RSP has signalled that the task has either completed or yielded.
*/
void Sched_HandleRSPDone(Scheduler* sc) {
OSScTask* curRSPTask;
OSScTask* nextRSP = NULL;
OSScTask* nextRDP = NULL;
s32 state;
ASSERT(sc->curRSPTask != NULL, "sc->curRSPTask", "../sched.c", 819);
// Task profiling
if (sc->curRSPTask->list.t.type == M_AUDTASK) {
gRSPAudioTimeAcc += osGetTime() - sRSPAudioTimeStart;
} else if (sc->curRSPTask->list.t.type == M_GFXTASK) {
gRSPGfxTimeAcc += osGetTime() - sRSPGfxTimeStart;
} else {
gRSPOtherTimeAcc += osGetTime() - sRSPOtherTimeStart;
}
// Clear current RSP task
curRSPTask = sc->curRSPTask;
sc->curRSPTask = NULL;
if (sLogScheduler) {
osSyncPrintf("RSP DONE %d %d", curRSPTask->state & OS_SC_YIELD, osSpTaskYielded(&curRSPTask->list));
}
if ((curRSPTask->state & OS_SC_YIELD) && osSpTaskYielded(&curRSPTask->list)) {
if (sLogScheduler) {
osSyncPrintf("[YIELDED]\n");
}
// Task yielded, set yielded state
curRSPTask->state |= OS_SC_YIELDED;
// Add it to the front of the queue
curRSPTask->next = sc->gfxListHead;
sc->gfxListHead = curRSPTask;
if (sc->gfxListTail == NULL) {
sc->gfxListTail = curRSPTask;
}
} else {
if (sLogScheduler) {
osSyncPrintf("[NOT YIELDED]\n");
}
// Task has completed on the RSP, unset RSP flag and check if the task is fully complete
curRSPTask->state &= ~OS_SC_SP;
Sched_TaskComplete(sc, curRSPTask);
}
// Run next task in the queue if there is one and the necessary resources are available
state = ((sc->curRSPTask == NULL) << 1) | (sc->curRDPTask == NULL);
if (Sched_Schedule(sc, &nextRSP, &nextRDP, state) != state) {
Sched_RunTask(sc, nextRSP, nextRDP);
}
if (sLogScheduler) {
osSyncPrintf("SP sc:%08x sp:%08x dp:%08x state:%x\n", sc, nextRSP, nextRDP, state);
}
}
/**
* RDP has signalled task done upon reaching a DPFullSync command
*/
void Sched_HandleRDPDone(Scheduler* sc) {
OSScTask* curTask;
OSScTask* nextRSP = NULL;
OSScTask* nextRDP = NULL;
s32 state;
// Task profiling
gRDPTimeAcc = osGetTime() - sRDPTimeStart;
// Sanity check
ASSERT(sc->curRDPTask != NULL, "sc->curRDPTask", "../sched.c", 878);
ASSERT(sc->curRDPTask->list.t.type == M_GFXTASK, "sc->curRDPTask->list.t.type == M_GFXTASK", "../sched.c", 879);
// Clear current RDP task
curTask = sc->curRDPTask;
sc->curRDPTask = NULL;
// Task has completed on the RDP, unset RDP flag and check if the task is fully complete
curTask->state &= ~OS_SC_DP;
Sched_TaskComplete(sc, curTask);
// Run next task in the queue if there is one and the necessary resources are available
state = ((sc->curRSPTask == NULL) << 1) | (sc->curRDPTask == NULL);
if (Sched_Schedule(sc, &nextRSP, &nextRDP, state) != state) {
Sched_RunTask(sc, nextRSP, nextRDP);
}
if (sLogScheduler) {
osSyncPrintf("DP sc:%08x sp:%08x dp:%08x state:%x\n", sc, nextRSP, nextRDP, state);
}
}
/**
* Called by other threads in order to wake the scheduler up immediately to enqueue and
* possibly run a task that has been sent to the task queue. Otherwise, any pending tasks
* will be enqueued on next vertical retrace.
*
* Original name: osScKickEntryMsg
*/
void Sched_Notify(Scheduler* sc) {
if (sLogScheduler) {
osSyncPrintf("osScKickEntryMsg\n");
}
osSendMesg(&sc->interruptQueue, (OSMesg)NOTIFY_MSG, OS_MESG_BLOCK);
}
void Sched_ThreadEntry(void* arg) {
OSMesg msg = NULL;
Scheduler* sc = (Scheduler*)arg;
while (true) {
if (sLogScheduler) {
// "%08d: standby"
osSyncPrintf("%08d:待機中\n", (u32)OS_CYCLES_TO_USEC(osGetTime()));
}
// Await interrupt messages, either from the OS, IrqMgr, or another thread
osRecvMesg(&sc->interruptQueue, &msg, OS_MESG_BLOCK);
switch ((s32)msg) {
case NOTIFY_MSG:
if (sLogScheduler) {
osSyncPrintf("%08d:ENTRY_MSG\n", (u32)OS_CYCLES_TO_USEC(osGetTime()));
}
Sched_HandleNotification(sc);
continue;
case RSP_DONE_MSG:
if (sLogScheduler) {
osSyncPrintf("%08d:RSP_DONE_MSG\n", (u32)OS_CYCLES_TO_USEC(osGetTime()));
}
Sched_HandleRSPDone(sc);
continue;
case RDP_DONE_MSG:
if (sLogScheduler) {
osSyncPrintf("%08d:RDP_DONE_MSG\n", (u32)OS_CYCLES_TO_USEC(osGetTime()));
}
Sched_HandleRDPDone(sc);
continue;
}
switch (((OSScMsg*)msg)->type) {
case OS_SC_RETRACE_MSG:
Sched_HandleRetrace(sc);
continue;
case OS_SC_PRE_NMI_MSG:
Sched_HandlePreNMI(sc);
continue;
case OS_SC_NMI_MSG:
Sched_HandleNMI(sc);
continue;
}
}
}
void Sched_Init(Scheduler* sc, void* stack, OSPri priority, u8 viModeType, UNK_TYPE arg4, IrqMgr* irqMgr) {
bzero(sc, sizeof(Scheduler));
sc->isFirstSwap = true;
// Create message queues for receiving interrupt events and tasks
osCreateMesgQueue(&sc->interruptQueue, sc->interruptMsgBuf, ARRAY_COUNT(sc->interruptMsgBuf));
osCreateMesgQueue(&sc->cmdQueue, sc->cmdMsgBuf, ARRAY_COUNT(sc->cmdMsgBuf));
osSetEventMesg(OS_EVENT_SP, &sc->interruptQueue, (OSMesg)RSP_DONE_MSG);
osSetEventMesg(OS_EVENT_DP, &sc->interruptQueue, (OSMesg)RDP_DONE_MSG);
IrqMgr_AddClient(irqMgr, &sc->irqClient, &sc->interruptQueue);
osCreateThread(&sc->thread, THREAD_ID_SCHED, Sched_ThreadEntry, sc, stack, priority);
osStartThread(&sc->thread);
}