mirror of
https://github.com/zeldaret/oot.git
synced 2025-01-15 21:07:15 +00:00
f643499462
* Match retail BSS ordering * Revert moving some global variables to headers * Adjust block numbers after header changes * Fix debug build * Overlay bss ordering * Fix BSS ordering after header changes * gc-eu-mq OK * Implement preprocessor for #pragma increment_block_number * Transfer usage comment from reencode.sh * Use temporary directory instead of temporary file * Move ColChkMassType back
2157 lines
69 KiB
C
2157 lines
69 KiB
C
#include "global.h"
|
|
#include "terminal.h"
|
|
|
|
// For retail BSS ordering, the block number of cbf in Math3D_CylVsCylOverlapCenterDist
|
|
// must be 0.
|
|
#pragma increment_block_number 190
|
|
|
|
s32 Math3D_LineVsLineClosestTwoPoints(Vec3f* lineAPointA, Vec3f* lineAPointB, Vec3f* lineBPointA, Vec3f* lineBPointB,
|
|
Vec3f* lineAClosestToB, Vec3f* lineBClosestToA);
|
|
s32 Math3D_TriLineIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* linePointA,
|
|
Vec3f* linePointB, Vec3f* intersect, s32 fromFront);
|
|
s32 Math3D_PlaneVsPlaneNewLine(f32 planeAA, f32 planeAB, f32 planeAC, f32 planeADist, f32 planeBA, f32 planeBB,
|
|
f32 planeBC, f32 planeBDist, InfiniteLine* intersect);
|
|
s32 Math3D_CirSquareVsTriSquare(f32 x0, f32 y0, f32 x1, f32 y1, f32 x2, f32 y2, f32 centerX, f32 centerY, f32 radius);
|
|
s32 Math3D_SphCubeVsTriCube(Vec3f* v0, Vec3f* v1, Vec3f* v2, Vec3f* center, f32 radius);
|
|
|
|
/**
|
|
* Creates an infinite line along the intersection of the plane defined from `planeAA`x + `planeAB`y + `planeAB`z +
|
|
* `planeADist` = 0 and `planeBA`x + `planeBB`y + `planeBC`z + `planeBDist` = 0, and finds the closest point on that
|
|
* intersection to the line segment `linePointA and linePointB`, outputs the intersection to `closestPoint`
|
|
*/
|
|
s32 Math3D_PlaneVsLineSegClosestPoint(f32 planeAA, f32 planeAB, f32 planeAC, f32 planeADist, f32 planeBA, f32 planeBB,
|
|
f32 planeBC, f32 planeBDist, Vec3f* linePointA, Vec3f* linePointB,
|
|
Vec3f* closestPoint) {
|
|
static InfiniteLine planeIntersectLine;
|
|
static Linef planeIntersectSeg;
|
|
|
|
Vec3f sp34; // unused
|
|
|
|
if (!Math3D_PlaneVsPlaneNewLine(planeAA, planeAB, planeAC, planeADist, planeBA, planeBB, planeBC, planeBDist,
|
|
&planeIntersectLine)) {
|
|
// The planes are parallel
|
|
return false;
|
|
}
|
|
|
|
// create a line segment on the plane.
|
|
Math_Vec3f_Copy(&planeIntersectSeg.a, &planeIntersectLine.point);
|
|
planeIntersectSeg.b.x = (planeIntersectLine.dir.x * 100.0f) + planeIntersectLine.point.x;
|
|
planeIntersectSeg.b.y = (planeIntersectLine.dir.y * 100.0f) + planeIntersectLine.point.y;
|
|
planeIntersectSeg.b.z = (planeIntersectLine.dir.z * 100.0f) + planeIntersectLine.point.z;
|
|
|
|
// closestPoint is a point on planeIntersect, sp34 is a point on linePointA, linePointB
|
|
if (!Math3D_LineVsLineClosestTwoPoints(&planeIntersectSeg.a, &planeIntersectSeg.b, linePointA, linePointB,
|
|
closestPoint, &sp34)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Finds the two points on lines A and B where the lines are closest together.
|
|
*/
|
|
s32 Math3D_LineVsLineClosestTwoPoints(Vec3f* lineAPointA, Vec3f* lineAPointB, Vec3f* lineBPointA, Vec3f* lineBPointB,
|
|
Vec3f* lineAClosestToB, Vec3f* lineBClosestToA) {
|
|
f32 sqMag;
|
|
f32 scaleB;
|
|
f32 lineAx;
|
|
f32 lineAy;
|
|
f32 lineAz;
|
|
f32 lineBx;
|
|
f32 lineBy;
|
|
f32 lineBz;
|
|
f32 compAAlongB;
|
|
f32 compBAAlongB;
|
|
Vec3f lineAPerpB;
|
|
Vec3f lineBAPerpB;
|
|
f32 tA;
|
|
f32 tB;
|
|
|
|
lineAx = lineAPointB->x - lineAPointA->x;
|
|
lineAy = lineAPointB->y - lineAPointA->y;
|
|
lineAz = lineAPointB->z - lineAPointA->z;
|
|
|
|
lineBx = lineBPointB->x - lineBPointA->x;
|
|
lineBy = lineBPointB->y - lineBPointA->y;
|
|
lineBz = lineBPointB->z - lineBPointA->z;
|
|
|
|
sqMag = SQ(lineBx) + SQ(lineBy) + SQ(lineBz);
|
|
if (IS_ZERO(sqMag)) {
|
|
return false;
|
|
}
|
|
|
|
scaleB = 1.0f / sqMag;
|
|
|
|
compAAlongB = ((lineAx * lineBx) + (lineAy * lineBy) + (lineAz * lineBz)) * scaleB;
|
|
|
|
compBAAlongB = ((lineBx * (lineAPointA->x - lineBPointA->x)) + (lineBy * (lineAPointA->y - lineBPointA->y)) +
|
|
(lineBz * (lineAPointA->z - lineBPointA->z))) *
|
|
scaleB;
|
|
|
|
lineAPerpB.x = lineAx - (lineBx * compAAlongB);
|
|
lineAPerpB.y = lineAy - (lineBy * compAAlongB);
|
|
lineAPerpB.z = lineAz - (lineBz * compAAlongB);
|
|
|
|
sqMag = SQXYZ(lineAPerpB);
|
|
if (IS_ZERO(sqMag)) {
|
|
return false;
|
|
}
|
|
|
|
lineBAPerpB.x = (lineAPointA->x - lineBPointA->x) - (lineBx * compBAAlongB);
|
|
lineBAPerpB.y = (lineAPointA->y - lineBPointA->y) - (lineBy * compBAAlongB);
|
|
lineBAPerpB.z = (lineAPointA->z - lineBPointA->z) - (lineBz * compBAAlongB);
|
|
|
|
tA = -DOTXYZ(lineAPerpB, lineBAPerpB) / sqMag;
|
|
lineAClosestToB->x = (lineAx * tA) + lineAPointA->x;
|
|
lineAClosestToB->y = (lineAy * tA) + lineAPointA->y;
|
|
lineAClosestToB->z = (lineAz * tA) + lineAPointA->z;
|
|
|
|
tB = (compAAlongB * tA) + compBAAlongB;
|
|
lineBClosestToA->x = (lineBx * tB) + lineBPointA->x;
|
|
lineBClosestToA->y = (lineBy * tB) + lineBPointA->y;
|
|
lineBClosestToA->z = (lineBz * tB) + lineBPointA->z;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Determines the closest point on the line `line` to `pos`, by forming a line perpendicular from
|
|
* `point` to `line` closest point is placed in `closestPoint`
|
|
*/
|
|
void Math3D_LineClosestToPoint(InfiniteLine* line, Vec3f* pos, Vec3f* closestPoint) {
|
|
f32 dirVectorLengthSq;
|
|
f32 t;
|
|
|
|
dirVectorLengthSq = Math3D_Vec3fMagnitudeSq(&line->dir);
|
|
if (IS_ZERO(dirVectorLengthSq)) {
|
|
PRINTF(VT_COL(YELLOW, BLACK));
|
|
// "Math3D_lineVsPosSuisenCross(): No straight line length"
|
|
PRINTF("Math3D_lineVsPosSuisenCross():直線の長さがありません\n");
|
|
PRINTF("cross = pos を返します。\n"); // "Returns cross = pos."
|
|
PRINTF(VT_RST);
|
|
Math_Vec3f_Copy(closestPoint, pos);
|
|
//! @bug Missing early return
|
|
}
|
|
|
|
t = (((pos->x - line->point.x) * line->dir.x) + ((pos->y - line->point.y) * line->dir.y) +
|
|
((pos->z - line->point.z) * line->dir.z)) /
|
|
dirVectorLengthSq;
|
|
closestPoint->x = (line->dir.x * t) + line->point.x;
|
|
closestPoint->y = (line->dir.y * t) + line->point.y;
|
|
closestPoint->z = (line->dir.z * t) + line->point.z;
|
|
}
|
|
|
|
void Math3D_FindPointOnPlaneIntersect(f32 planeAAxis1Norm, f32 planeAAxis2Norm, f32 planeBAxis1Norm,
|
|
f32 planeBAxis2Norm, f32 axis3Direction, f32 planeADist, f32 planeBDist,
|
|
f32* axis1Point, f32* axis2Point) {
|
|
*axis1Point = ((planeAAxis2Norm * planeBDist) - (planeBAxis2Norm * planeADist)) / axis3Direction;
|
|
*axis2Point = ((planeBAxis1Norm * planeADist) - (planeAAxis1Norm * planeBDist)) / axis3Direction;
|
|
}
|
|
|
|
/**
|
|
* Creates a line between the intersections of two planes defined from `planeAA`x + `planeAB`y + `planeAC`z +
|
|
* `planeADist` = 0 and `planeBA`x + `planeBB`y + `planeBC`z + `planeBDist` = 0, and outputs the line to `intersect`.
|
|
* Returns false if the planes are parallel.
|
|
*/
|
|
s32 Math3D_PlaneVsPlaneNewLine(f32 planeAA, f32 planeAB, f32 planeAC, f32 planeADist, f32 planeBA, f32 planeBB,
|
|
f32 planeBC, f32 planeBDist, InfiniteLine* intersect) {
|
|
char pad[4];
|
|
Vec3f planeANormal;
|
|
Vec3f planeBNormal;
|
|
f32 dirX;
|
|
f32 dirY;
|
|
f32 dirZ;
|
|
|
|
VEC_SET(planeANormal, planeAA, planeAB, planeAC);
|
|
VEC_SET(planeBNormal, planeBA, planeBB, planeBC);
|
|
|
|
Math3D_Vec3f_Cross(&planeANormal, &planeBNormal, &intersect->dir);
|
|
|
|
if (IS_ZERO(intersect->dir.x) && IS_ZERO(intersect->dir.y) && IS_ZERO(intersect->dir.z)) {
|
|
// planes are parallel
|
|
return false;
|
|
}
|
|
|
|
dirX = fabsf(intersect->dir.x);
|
|
dirY = fabsf(intersect->dir.y);
|
|
dirZ = fabsf(intersect->dir.z);
|
|
|
|
if ((dirX >= dirY) && (dirX >= dirZ)) {
|
|
Math3D_FindPointOnPlaneIntersect(planeAB, planeAC, planeBB, planeBC, intersect->dir.x, planeADist, planeBDist,
|
|
&intersect->point.y, &intersect->point.z);
|
|
intersect->point.x = 0.0f;
|
|
} else if ((dirY >= dirX) && (dirY >= dirZ)) {
|
|
Math3D_FindPointOnPlaneIntersect(planeAC, planeAA, planeBC, planeBA, intersect->dir.y, planeADist, planeBDist,
|
|
&intersect->point.z, &intersect->point.x);
|
|
intersect->point.y = 0.0f;
|
|
} else {
|
|
Math3D_FindPointOnPlaneIntersect(planeAA, planeAB, planeBA, planeBB, intersect->dir.z, planeADist, planeBDist,
|
|
&intersect->point.x, &intersect->point.y);
|
|
intersect->point.z = 0.0f;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Gets the closest point on the line formed from the intersection of of the planes defined from
|
|
* `planeAA`x + `planeAB`y + `planeAC`z + `planeADist` = 0 and
|
|
* `planeBA`x + `planeBB`y + `planeBC`z + `planeBDist` = 0
|
|
* the point on the intersection line closest to `point` is placed in `closestPoint`
|
|
* returns false if the planes are parallel.
|
|
*/
|
|
s32 Math3D_PlaneVsPlaneVsLineClosestPoint(f32 planeAA, f32 planeAB, f32 planeAC, f32 planeADist, f32 planeBA,
|
|
f32 planeBB, f32 planeBC, f32 planeBDist, Vec3f* point, Vec3f* closestPoint) {
|
|
static InfiniteLine planeIntersect;
|
|
|
|
if (!Math3D_PlaneVsPlaneNewLine(planeAA, planeAB, planeAC, planeADist, planeBA, planeBB, planeBC, planeBDist,
|
|
&planeIntersect)) {
|
|
return false;
|
|
}
|
|
Math3D_LineClosestToPoint(&planeIntersect, point, closestPoint);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Finds a point on the line from starting point `v0`, and directional vector `dir`
|
|
* which is `dist` length from the starting point. Result is placed in `ret`
|
|
*/
|
|
void Math3D_PointOnInfiniteLine(Vec3f* v0, Vec3f* dir, f32 dist, Vec3f* ret) {
|
|
ret->x = (dir->x * dist) + v0->x;
|
|
ret->y = (dir->y * dist) + v0->y;
|
|
ret->z = (dir->z * dist) + v0->z;
|
|
}
|
|
|
|
/**
|
|
* Splits the line segment from end points `v0` and `v1`, and splits that segment
|
|
* by `ratio` of `v0`:`v1`, places the resulting point on the line in `ret`
|
|
*/
|
|
void Math3D_LineSplitRatio(Vec3f* v0, Vec3f* v1, f32 ratio, Vec3f* ret) {
|
|
Vec3f diff;
|
|
|
|
Math_Vec3f_Diff(v1, v0, &diff);
|
|
Math3D_PointOnInfiniteLine(v0, &diff, ratio, ret);
|
|
}
|
|
|
|
/**
|
|
* Calculates the cosine between vectors `a` and `b`
|
|
*/
|
|
f32 Math3D_Cos(Vec3f* a, Vec3f* b) {
|
|
f32 ret;
|
|
|
|
Math3D_CosOut(a, b, &ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Calculates the cosine between vectors `a` and `b` and places the result in `ret`
|
|
* returns true if the cosine cannot be calculated because the product of the magnitudes is zero
|
|
*/
|
|
s32 Math3D_CosOut(Vec3f* a, Vec3f* b, f32* dst) {
|
|
f32 magProduct;
|
|
|
|
magProduct = Math3D_Vec3fMagnitude(a) * Math3D_Vec3fMagnitude(b);
|
|
if (IS_ZERO(magProduct)) {
|
|
*dst = 0.0f;
|
|
return true;
|
|
}
|
|
*dst = ((a->x * b->x) + (a->y * b->y) + (a->z * b->z)) / magProduct;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Reflects vector `vec` across the normal vector `normal`, reflection vector is placed in
|
|
* `reflVec`
|
|
*/
|
|
void Math3D_Vec3fReflect(Vec3f* vec, Vec3f* normal, Vec3f* reflVec) {
|
|
|
|
f32 normScaleY;
|
|
Vec3f negVec;
|
|
f32 normScaleZ;
|
|
f32 normScaleX;
|
|
f32 vecDotNorm;
|
|
|
|
negVec.x = vec->x * -1.0f;
|
|
negVec.y = vec->y * -1.0f;
|
|
negVec.z = vec->z * -1.0f;
|
|
|
|
vecDotNorm = Math3D_Cos(&negVec, normal);
|
|
|
|
normScaleX = normal->x * vecDotNorm;
|
|
normScaleY = normal->y * vecDotNorm;
|
|
normScaleZ = normal->z * vecDotNorm;
|
|
|
|
reflVec->x = ((normScaleX + vec->x) + (normScaleX + vec->x)) + negVec.x;
|
|
reflVec->y = ((normScaleY + vec->y) + (normScaleY + vec->y)) + negVec.y;
|
|
reflVec->z = ((normScaleZ + vec->z) + (normScaleZ + vec->z)) + negVec.z;
|
|
}
|
|
|
|
/**
|
|
* Checks if the point (`x`,`y`) is contained within the square formed from (`upperLeftX`,`upperLeftY`) to
|
|
* (`lowerRightX`,`lowerRightY`)
|
|
*/
|
|
s32 Math3D_PointInSquare2D(f32 upperLeftX, f32 lowerRightX, f32 upperLeftY, f32 lowerRightY, f32 x, f32 y) {
|
|
if (x >= upperLeftX && x <= lowerRightX && y >= upperLeftY && y <= lowerRightY) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Checks if the square formed around the circle with center (`centerX`,`centerY`) with radius `radius`
|
|
* touches any portion of the square formed around the triangle with vertices (`x0`,`y0`), (`x1`,`y1`),
|
|
* and (`x2`,`y2`)
|
|
*/
|
|
s32 Math3D_CirSquareVsTriSquare(f32 x0, f32 y0, f32 x1, f32 y1, f32 x2, f32 y2, f32 centerX, f32 centerY, f32 radius) {
|
|
f32 minX;
|
|
f32 maxX;
|
|
f32 minY;
|
|
f32 maxY;
|
|
|
|
minX = maxX = x0;
|
|
minY = maxY = y0;
|
|
|
|
if (x1 < minX) {
|
|
minX = x1;
|
|
} else if (maxX < x1) {
|
|
maxX = x1;
|
|
}
|
|
|
|
if (y1 < minY) {
|
|
minY = y1;
|
|
} else if (maxY < y1) {
|
|
maxY = y1;
|
|
}
|
|
|
|
if (x2 < minX) {
|
|
minX = x2;
|
|
} else if (maxX < x2) {
|
|
maxX = x2;
|
|
}
|
|
|
|
if (y2 < minY) {
|
|
minY = y2;
|
|
} else if (maxY < y2) {
|
|
maxY = y2;
|
|
}
|
|
|
|
if ((minX - radius) <= centerX && (maxX + radius) >= centerX && (minY - radius) <= centerY &&
|
|
(maxY + radius) >= centerY) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Checks if the cube formed around the triangle formed from `v0`, `v1`, and `v2`
|
|
* has any portion touching the cube formed around the sphere with center `center`
|
|
* and radius of `radius`
|
|
*/
|
|
s32 Math3D_SphCubeVsTriCube(Vec3f* v0, Vec3f* v1, Vec3f* v2, Vec3f* center, f32 radius) {
|
|
f32 minX;
|
|
f32 maxX;
|
|
f32 minY;
|
|
f32 maxY;
|
|
f32 minZ;
|
|
f32 maxZ;
|
|
|
|
minX = maxX = v0->x;
|
|
minY = maxY = v0->y;
|
|
minZ = maxZ = v0->z;
|
|
|
|
if (v1->x < minX) {
|
|
minX = v1->x;
|
|
} else if (maxX < v1->x) {
|
|
maxX = v1->x;
|
|
}
|
|
|
|
if (v1->y < minY) {
|
|
minY = v1->y;
|
|
} else if (maxY < v1->y) {
|
|
maxY = v1->y;
|
|
}
|
|
|
|
if (v1->z < minZ) {
|
|
minZ = v1->z;
|
|
} else if (maxZ < v1->z) {
|
|
maxZ = v1->z;
|
|
}
|
|
|
|
if (v2->x < minX) {
|
|
minX = v2->x;
|
|
} else if (maxX < v2->x) {
|
|
maxX = v2->x;
|
|
}
|
|
|
|
if (v2->y < minY) {
|
|
minY = v2->y;
|
|
} else if (maxY < v2->y) {
|
|
maxY = v2->y;
|
|
}
|
|
|
|
if (v2->z < minZ) {
|
|
minZ = v2->z;
|
|
} else if (maxZ < v2->z) {
|
|
maxZ = v2->z;
|
|
}
|
|
|
|
if ((center->x >= (minX - radius)) && (center->x <= (maxX + radius)) && (center->y >= (minY - radius)) &&
|
|
(center->y <= (maxY + radius)) && (center->z >= (minZ - radius)) && (center->z <= (maxZ + radius))) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Returns the distance squared between `a` and `b` on a single axis
|
|
*/
|
|
f32 Math3D_Dist1DSq(f32 a, f32 b) {
|
|
return SQ(a) + SQ(b);
|
|
}
|
|
|
|
/**
|
|
* Returns the distance between `a` and `b` on a single axis
|
|
*/
|
|
f32 Math3D_Dist1D(f32 a, f32 b) {
|
|
return sqrtf(Math3D_Dist1DSq(a, b));
|
|
}
|
|
|
|
/**
|
|
* Returns the distance squared between (`x0`,`y0`) and (`x1`,`x2`)
|
|
*/
|
|
f32 Math3D_Dist2DSq(f32 x0, f32 y0, f32 x1, f32 y1) {
|
|
return Math3D_Dist1DSq(x0 - x1, y0 - y1);
|
|
}
|
|
|
|
/**
|
|
* Returns the distance between points (`x0`,`y0`) and (`x1`,`y1`)
|
|
*/
|
|
f32 Math3D_Dist2D(f32 x0, f32 y0, f32 x1, f32 y1) {
|
|
return sqrtf(Math3D_Dist2DSq(x0, y0, x1, y1));
|
|
}
|
|
|
|
/**
|
|
* Returns the magnitude (length) squared of `vec`
|
|
*/
|
|
f32 Math3D_Vec3fMagnitudeSq(Vec3f* vec) {
|
|
return SQ(vec->x) + SQ(vec->y) + SQ(vec->z);
|
|
}
|
|
|
|
/**
|
|
* Returns the magnitude (length) of `vec`
|
|
*/
|
|
f32 Math3D_Vec3fMagnitude(Vec3f* vec) {
|
|
return sqrt(Math3D_Vec3fMagnitudeSq(vec));
|
|
}
|
|
|
|
/**
|
|
* Returns the distance between `a` and `b` squared.
|
|
*/
|
|
f32 Math3D_Vec3fDistSq(Vec3f* a, Vec3f* b) {
|
|
Vec3f diff;
|
|
|
|
Math_Vec3f_Diff(a, b, &diff);
|
|
return Math3D_Vec3fMagnitudeSq(&diff);
|
|
}
|
|
|
|
/*
|
|
* Calculates the distance between points `a` and `b`
|
|
*/
|
|
f32 Math3D_Vec3f_DistXYZ(Vec3f* a, Vec3f* b) {
|
|
return Math_Vec3f_DistXYZ(a, b);
|
|
}
|
|
|
|
/*
|
|
* Calculates the distance between `a` and `b`.
|
|
*/
|
|
f32 Math3D_DistXYZ16toF(Vec3s* a, Vec3f* b) {
|
|
Vec3f diff;
|
|
|
|
diff.x = a->x - b->x;
|
|
diff.y = a->y - b->y;
|
|
diff.z = a->z - b->z;
|
|
return Math3D_Vec3fMagnitude(&diff);
|
|
}
|
|
|
|
/**
|
|
* Gets the Z portion of the cross product of vectors `a - (`dx`,`dy`,z) and `b` - (`dx`,`dy`,z)
|
|
*/
|
|
f32 Math3D_Vec3fDiff_CrossZ(Vec3f* a, Vec3f* b, f32 dx, f32 dy) {
|
|
return ((a->x - dx) * (b->y - dy)) - ((a->y - dy) * (b->x - dx));
|
|
}
|
|
|
|
/**
|
|
* Gets the X portion of the cross product of vectors `a - (x,`dy`,`dz`) and `b` - (x,`dy`,`dz`)
|
|
*/
|
|
f32 Math3D_Vec3fDiff_CrossX(Vec3f* a, Vec3f* b, f32 dy, f32 dz) {
|
|
return ((a->y - dy) * (b->z - dz)) - ((a->z - dz) * (b->y - dy));
|
|
}
|
|
|
|
/**
|
|
* Gets the Y portion of the cross product of vectors `a - (`dx`,y,`dz`) and `b` - (`dx`,y,`dz`)
|
|
*/
|
|
f32 Math3D_Vec3fDiff_CrossY(Vec3f* a, Vec3f* b, f32 dz, f32 dx) {
|
|
return ((a->z - dz) * (b->x - dx)) - ((a->x - dx) * (b->z - dz));
|
|
}
|
|
|
|
/**
|
|
* Gets the Cross Product of vectors `a` and `b` and places the result in `ret`
|
|
*/
|
|
void Math3D_Vec3f_Cross(Vec3f* a, Vec3f* b, Vec3f* ret) {
|
|
ret->x = (a->y * b->z) - (a->z * b->y);
|
|
ret->y = (a->z * b->x) - (a->x * b->z);
|
|
ret->z = (a->x * b->y) - (a->y * b->x);
|
|
}
|
|
|
|
/*
|
|
* Calculates the normal vector to a surface with sides `vb` - `va` and `vc` - `va`
|
|
* outputs the normal to `normal`
|
|
*/
|
|
void Math3D_SurfaceNorm(Vec3f* va, Vec3f* vb, Vec3f* vc, Vec3f* normal) {
|
|
static Vec3f abDiff;
|
|
static Vec3f acDiff;
|
|
|
|
Math_Vec3f_Diff(vb, va, &abDiff);
|
|
Math_Vec3f_Diff(vc, va, &acDiff);
|
|
Math3D_Vec3f_Cross(&abDiff, &acDiff, normal);
|
|
}
|
|
|
|
/**
|
|
* Creates flags relative to the faces of a cube.
|
|
*/
|
|
s32 Math3D_PointRelativeToCubeFaces(Vec3f* point, Vec3f* min, Vec3f* max) {
|
|
s32 ret = 0;
|
|
|
|
if (point->x > max->x) {
|
|
ret = 1;
|
|
}
|
|
|
|
if (point->x < min->x) {
|
|
ret |= 2;
|
|
}
|
|
|
|
if (point->y > max->y) {
|
|
ret |= 4;
|
|
}
|
|
|
|
if (point->y < min->y) {
|
|
ret |= 8;
|
|
}
|
|
|
|
if (point->z > max->z) {
|
|
ret |= 0x10;
|
|
}
|
|
|
|
if (point->z < min->z) {
|
|
ret |= 0x20;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Creates flags of `point` relative to the edges of a cube
|
|
*/
|
|
s32 Math3D_PointRelativeToCubeEdges(Vec3f* point, Vec3f* min, Vec3f* max) {
|
|
s32 ret = 0;
|
|
|
|
if ((-min->x + max->y) < (-point->x + point->y)) {
|
|
ret |= 1;
|
|
}
|
|
|
|
if ((-point->x + point->y) < (-max->x + min->y)) {
|
|
ret |= 2;
|
|
}
|
|
|
|
if ((max->x + max->y) < (point->x + point->y)) {
|
|
ret |= 4;
|
|
}
|
|
|
|
if ((point->x + point->y) < (min->x + min->y)) {
|
|
ret |= 8;
|
|
}
|
|
|
|
if ((-min->z + max->y) < (-point->z + point->y)) {
|
|
ret |= 0x10;
|
|
}
|
|
|
|
if ((-point->z + point->y) < (-max->z + min->y)) {
|
|
ret |= 0x20;
|
|
}
|
|
|
|
if ((max->z + max->y) < (point->z + point->y)) {
|
|
ret |= 0x40;
|
|
}
|
|
|
|
if ((point->z + point->y) < (min->z + min->y)) {
|
|
ret |= 0x80;
|
|
}
|
|
|
|
if ((-min->z + max->x) < (-point->z + point->x)) {
|
|
ret |= 0x100;
|
|
}
|
|
|
|
if ((-point->z + point->x) < (-max->z + min->x)) {
|
|
ret |= 0x200;
|
|
}
|
|
|
|
if ((max->z + max->x) < (point->z + point->x)) {
|
|
ret |= 0x400;
|
|
}
|
|
|
|
if ((point->z + point->x) < (min->z + min->x)) {
|
|
ret |= 0x800;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Creates flags for `point` relative to the vertices of a cube
|
|
*/
|
|
s32 Math3D_PointRelativeToCubeVertices(Vec3f* point, Vec3f* min, Vec3f* max) {
|
|
s32 ret = 0;
|
|
|
|
if ((max->x + max->y + max->z) < (point->x + point->y + point->z)) {
|
|
ret = 1;
|
|
}
|
|
|
|
if ((-min->x + max->y + max->z) < (-point->x + point->y + point->z)) {
|
|
ret |= 2;
|
|
}
|
|
|
|
if ((-min->x + max->y - min->z) < (-point->x + point->y - point->z)) {
|
|
ret |= 4;
|
|
}
|
|
|
|
if ((max->x + max->y - min->z) < (point->x + point->y - point->z)) {
|
|
ret |= 8;
|
|
}
|
|
|
|
if ((max->x - min->y + max->z) < (point->x - point->y + point->z)) {
|
|
ret |= 0x10;
|
|
}
|
|
|
|
//! @bug: The next 2 conditions are the same check.
|
|
if ((-min->x - min->y + max->z) < (-point->x - point->y + point->z)) {
|
|
ret |= 0x20;
|
|
}
|
|
|
|
if ((-min->x - min->y + max->z) < (-point->x - point->y + point->z)) {
|
|
ret |= 0x40;
|
|
}
|
|
|
|
if ((-min->x - min->y - min->z) < (-point->x - point->y - point->z)) {
|
|
ret |= 0x80;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Checks if a line segment with endpoints `a` and `b` intersect a cube
|
|
*/
|
|
s32 Math3D_LineVsCube(Vec3f* min, Vec3f* max, Vec3f* a, Vec3f* b) {
|
|
static Vec3f triVtx0;
|
|
static Vec3f triVtx1;
|
|
static Vec3f triVtx2;
|
|
static Vec3f intersectPoint;
|
|
|
|
s32 flags[2];
|
|
|
|
flags[0] = flags[1] = 0;
|
|
flags[0] = Math3D_PointRelativeToCubeFaces(a, min, max);
|
|
if (!flags[0]) {
|
|
return true;
|
|
}
|
|
|
|
flags[1] = Math3D_PointRelativeToCubeFaces(b, min, max);
|
|
if (!flags[1]) {
|
|
return true;
|
|
}
|
|
|
|
if (flags[0] & flags[1]) {
|
|
return false;
|
|
}
|
|
|
|
flags[0] |= (Math3D_PointRelativeToCubeEdges(a, min, max) << 8);
|
|
flags[1] |= (Math3D_PointRelativeToCubeEdges(b, min, max) << 8);
|
|
if (flags[0] & flags[1]) {
|
|
return false;
|
|
}
|
|
|
|
flags[0] |= (Math3D_PointRelativeToCubeVertices(a, min, max) << 0x18);
|
|
flags[1] |= (Math3D_PointRelativeToCubeVertices(b, min, max) << 0x18);
|
|
if (flags[0] & flags[1]) {
|
|
return false;
|
|
}
|
|
|
|
// face 1
|
|
triVtx0.x = min->x;
|
|
triVtx0.y = min->y;
|
|
triVtx0.z = min->z;
|
|
triVtx1.x = min->x;
|
|
triVtx1.y = min->y;
|
|
triVtx1.z = max->z;
|
|
triVtx2.x = min->x;
|
|
triVtx2.y = max->y;
|
|
triVtx2.z = max->z;
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, -1.0f, 0.0f, 0.0f, min->x, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
|
|
triVtx0.x = min->x;
|
|
triVtx0.y = min->y;
|
|
triVtx0.z = min->z;
|
|
triVtx1.x = min->x;
|
|
triVtx1.y = max->y;
|
|
triVtx1.z = max->z;
|
|
triVtx2.x = min->x;
|
|
triVtx2.y = max->y;
|
|
triVtx2.z = min->z;
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, -1.0f, 0.0f, 0.0f, min->x, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
|
|
// face 2
|
|
triVtx0.x = min->x;
|
|
triVtx0.y = max->y;
|
|
triVtx0.z = max->z;
|
|
triVtx1.x = min->x;
|
|
triVtx1.y = min->y;
|
|
triVtx1.z = max->z;
|
|
triVtx2.x = max->x;
|
|
triVtx2.y = max->y;
|
|
triVtx2.z = max->z;
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 0.0f, 1.0f, -max->z, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
triVtx0.x = max->x;
|
|
triVtx0.y = max->y;
|
|
triVtx0.z = max->z;
|
|
triVtx1.x = min->x;
|
|
triVtx1.y = min->y;
|
|
triVtx1.z = max->z;
|
|
triVtx2.x = max->x;
|
|
//! @bug trVtx1.y should be triVtx2.y, prevents a tri on the cube from being checked.
|
|
triVtx1.y = min->y;
|
|
triVtx2.z = max->z;
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 0.0f, 1.0f, -max->z, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
|
|
// face 3
|
|
triVtx0.x = max->x;
|
|
triVtx0.y = max->y;
|
|
triVtx0.z = max->z;
|
|
triVtx1.x = min->x;
|
|
triVtx1.y = max->y;
|
|
triVtx1.z = min->z;
|
|
triVtx2.x = min->x;
|
|
triVtx2.y = max->y;
|
|
triVtx2.z = max->z;
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 1.0f, 0.0f, -max->y, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
triVtx0.x = max->x;
|
|
triVtx0.y = max->y;
|
|
triVtx0.z = max->z;
|
|
triVtx1.x = max->x;
|
|
triVtx1.y = max->y;
|
|
triVtx1.z = min->z;
|
|
triVtx2.x = min->x;
|
|
triVtx2.y = max->y;
|
|
triVtx2.z = min->z;
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 1.0f, 0.0f, -max->y, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
|
|
// face 4
|
|
triVtx0.x = min->x;
|
|
triVtx0.y = min->y;
|
|
triVtx0.z = min->z;
|
|
triVtx1.x = min->x;
|
|
triVtx1.y = max->y;
|
|
triVtx1.z = min->z;
|
|
triVtx2.x = max->x;
|
|
triVtx2.y = max->y;
|
|
triVtx2.z = min->z;
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 0.0f, -1.0f, min->z, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
triVtx0.x = min->x;
|
|
triVtx0.y = min->y;
|
|
triVtx0.z = min->z;
|
|
triVtx1.x = max->x;
|
|
triVtx1.y = max->y;
|
|
triVtx1.z = min->z;
|
|
triVtx2.x = max->x;
|
|
triVtx2.y = min->y;
|
|
triVtx2.z = min->z;
|
|
|
|
// face 5
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, 0.0f, -1.0f, min->z, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
triVtx0.x = min->x;
|
|
triVtx0.y = min->y;
|
|
triVtx0.z = min->z;
|
|
triVtx1.x = max->x;
|
|
triVtx1.y = min->y;
|
|
triVtx1.z = min->z;
|
|
triVtx2.x = max->x;
|
|
triVtx2.y = min->y;
|
|
triVtx2.z = max->z;
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, -1.0f, 0.0f, min->y, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
triVtx0.x = min->x;
|
|
triVtx0.y = min->y;
|
|
triVtx0.z = min->z;
|
|
triVtx1.x = max->x;
|
|
triVtx1.y = min->y;
|
|
triVtx1.z = max->z;
|
|
triVtx2.x = min->x;
|
|
triVtx2.y = min->y;
|
|
triVtx2.z = max->z;
|
|
|
|
// face 6
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 0.0f, -1.0f, 0.0f, min->y, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
triVtx0.x = max->x;
|
|
triVtx0.y = max->y;
|
|
triVtx0.z = max->z;
|
|
triVtx1.x = max->x;
|
|
triVtx1.y = min->y;
|
|
triVtx1.z = min->z;
|
|
triVtx2.x = max->x;
|
|
triVtx2.y = max->y;
|
|
triVtx2.z = min->z;
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 1.0f, 0.0f, 0.0f, -max->x, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
triVtx0.x = max->x;
|
|
triVtx0.y = max->y;
|
|
triVtx0.z = max->z;
|
|
triVtx1.x = max->x;
|
|
triVtx1.y = min->y;
|
|
triVtx1.z = max->z;
|
|
triVtx2.x = max->x;
|
|
triVtx2.y = min->y;
|
|
triVtx2.z = min->z;
|
|
if (Math3D_TriLineIntersect(&triVtx0, &triVtx1, &triVtx2, 1.0f, 0.0f, 0.0f, -max->x, a, b, &intersectPoint, 0)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Checks if a line segment with endpoints `a` and `b` intersect a cube
|
|
*/
|
|
s32 Math3D_LineVsCubeShort(Vec3s* min, Vec3s* max, Vec3s* a, Vec3s* b) {
|
|
static Vec3f minF;
|
|
static Vec3f maxF;
|
|
static Vec3f aF;
|
|
static Vec3f bF;
|
|
|
|
minF.x = min->x;
|
|
minF.y = min->y;
|
|
minF.z = min->z;
|
|
maxF.x = max->x;
|
|
maxF.y = max->y;
|
|
maxF.z = max->z;
|
|
aF.x = a->x;
|
|
aF.y = a->y;
|
|
aF.z = a->z;
|
|
bF.x = b->x;
|
|
bF.y = b->y;
|
|
bF.z = b->z;
|
|
return Math3D_LineVsCube(&minF, &maxF, &aF, &bF);
|
|
}
|
|
|
|
/**
|
|
* Rotates the xz plane around the y axis `angle` degrees.
|
|
* outputs the plane equation `a``pointOnPlane->x` + 0y + `c``pointOnPlane->z`+`d` = 0
|
|
*/
|
|
void Math3D_RotateXZPlane(Vec3f* pointOnPlane, s16 angle, f32* a, f32* c, f32* d) {
|
|
*a = Math_SinS(angle) * 32767.0f;
|
|
*c = Math_CosS(angle) * 32767.0f;
|
|
*d = -((*a * pointOnPlane->x) + (*c * pointOnPlane->z));
|
|
}
|
|
|
|
/*
|
|
* Defines a plane from vertices `va`, `vb`, and `vc`. Normal components are output to
|
|
* `nx`, `ny`, and `nz`. Distance from the origin is output to `originDist`
|
|
* Satisfies the plane equation NxVx + NyVy + NzVz + D = 0
|
|
*/
|
|
void Math3D_DefPlane(Vec3f* va, Vec3f* vb, Vec3f* vc, f32* nx, f32* ny, f32* nz, f32* originDist) {
|
|
static Vec3f normal;
|
|
|
|
f32 normMagnitude;
|
|
f32 normMagInv;
|
|
|
|
Math3D_SurfaceNorm(va, vb, vc, &normal);
|
|
normMagnitude = sqrtf(SQ(normal.x) + SQ(normal.y) + SQ(normal.z));
|
|
if (!IS_ZERO(normMagnitude)) {
|
|
normMagInv = 1.0f / normMagnitude;
|
|
*nx = normal.x * normMagInv;
|
|
*ny = normal.y * normMagInv;
|
|
*nz = normal.z * normMagInv;
|
|
*originDist = -((*nx * va->x) + (*ny * va->y) + (*nz * va->z));
|
|
} else {
|
|
*originDist = 0.0f;
|
|
*nz = 0.0f;
|
|
*ny = 0.0f;
|
|
*nx = 0.0f;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the answer to the plane equation with elements specified by arguments.
|
|
*/
|
|
f32 Math3D_Planef(f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* pointOnPlane) {
|
|
return (nx * pointOnPlane->x) + (ny * pointOnPlane->y) + (nz * pointOnPlane->z) + originDist;
|
|
}
|
|
|
|
/*
|
|
* Returns the answer to the plane equation
|
|
*/
|
|
f32 Math3D_Plane(Plane* plane, Vec3f* pointOnPlane) {
|
|
return (plane->normal.x * pointOnPlane->x) + (plane->normal.y * pointOnPlane->y) +
|
|
(plane->normal.z * pointOnPlane->z) + plane->originDist;
|
|
}
|
|
|
|
/*
|
|
* Calculates the absolute distance from a point `p` to the plane defined as
|
|
* `nx`, `ny`, `nz`, and `originDist`
|
|
*/
|
|
f32 Math3D_UDistPlaneToPos(f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* p) {
|
|
if (OOT_DEBUG && IS_ZERO(sqrtf(SQ(nx) + SQ(ny) + SQ(nz)))) {
|
|
PRINTF(VT_COL(YELLOW, BLACK));
|
|
// "Math3DLengthPlaneAndPos(): Normal size is near zero %f %f %f"
|
|
PRINTF("Math3DLengthPlaneAndPos():法線size がゼロ近いです%f %f %f\n", nx, ny, nz);
|
|
PRINTF(VT_RST);
|
|
return 0.0f;
|
|
}
|
|
return fabsf(Math3D_DistPlaneToPos(nx, ny, nz, originDist, p));
|
|
}
|
|
|
|
/*
|
|
* Calculates the signed distance from a point `p` to a plane defined as
|
|
* `nx`, `ny`, `nz`, and `originDist`
|
|
*/
|
|
f32 Math3D_DistPlaneToPos(f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* p) {
|
|
f32 normMagnitude;
|
|
|
|
normMagnitude = sqrtf(SQ(nx) + SQ(ny) + SQ(nz));
|
|
if (IS_ZERO(normMagnitude)) {
|
|
PRINTF(VT_COL(YELLOW, BLACK));
|
|
// "Math3DSignedLengthPlaneAndPos(): Normal size is close to zero %f %f %f"
|
|
PRINTF("Math3DSignedLengthPlaneAndPos():法線size がゼロ近いです%f %f %f\n", nx, ny, nz);
|
|
PRINTF(VT_RST);
|
|
return 0.0f;
|
|
}
|
|
return Math3D_Planef(nx, ny, nz, originDist, p) / normMagnitude;
|
|
}
|
|
|
|
/**
|
|
* Checks if the point defined by (`z`,`x`) is within distance of the triangle defined from `v0`,`v1`, and `v2`
|
|
*/
|
|
s32 Math3D_TriChkPointParaYImpl(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 z, f32 x, f32 detMax, f32 chkDist, f32 ny) {
|
|
f32 detv0v1;
|
|
f32 detv1v2;
|
|
f32 detv2v0;
|
|
f32 distToEdgeSq;
|
|
f32 chkDistSq;
|
|
|
|
// first check if the point is within range of the triangle.
|
|
if (!Math3D_CirSquareVsTriSquare(v0->z, v0->x, v1->z, v1->x, v2->z, v2->x, z, x, chkDist)) {
|
|
return false;
|
|
}
|
|
|
|
// check if the point is within `chkDist` units of any vertex of the triangle.
|
|
chkDistSq = SQ(chkDist);
|
|
if (((SQ(v0->z - z) + SQ(v0->x - x)) < chkDistSq) || ((SQ(v1->z - z) + SQ(v1->x - x)) < chkDistSq) ||
|
|
((SQ(v2->z - z) + SQ(v2->x - x)) < chkDistSq)) {
|
|
|
|
return true;
|
|
}
|
|
|
|
// Calculate the determinant of each face of the triangle to the point.
|
|
// If all the of determinants are within abs(`detMax`), return true.
|
|
detv0v1 = ((v0->z - z) * (v1->x - x)) - ((v0->x - x) * (v1->z - z));
|
|
detv1v2 = ((v1->z - z) * (v2->x - x)) - ((v1->x - x) * (v2->z - z));
|
|
detv2v0 = ((v2->z - z) * (v0->x - x)) - ((v2->x - x) * (v0->z - z));
|
|
|
|
if (((detMax >= detv0v1) && (detMax >= detv1v2) && (detMax >= detv2v0)) ||
|
|
((-detMax <= detv0v1) && (-detMax <= detv1v2) && (-detMax <= detv2v0))) {
|
|
return true;
|
|
}
|
|
|
|
if (fabsf(ny) > 0.5f) {
|
|
// Do a check on each face of the triangle, if the point is within `chkDist` units return true.
|
|
if (Math3D_PointDistSqToLine2D(z, x, v0->z, v0->x, v1->z, v1->x, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) {
|
|
return true;
|
|
}
|
|
|
|
if (Math3D_PointDistSqToLine2D(z, x, v1->z, v1->x, v2->z, v2->x, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) {
|
|
return true;
|
|
}
|
|
|
|
if (Math3D_PointDistSqToLine2D(z, x, v2->z, v2->x, v0->z, v0->x, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaYDeterminate(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 z, f32 x, f32 detMax, f32 ny) {
|
|
return Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, detMax, 1.0f, ny);
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaYSlopedY(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 z, f32 x) {
|
|
return Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 300.0f, 1.0f, 0.6f);
|
|
}
|
|
|
|
/**
|
|
* Performs the triangle and point check parallel to the Y axis, outputs the y coordinate of the point to `yIntersect`
|
|
*/
|
|
s32 Math3D_TriChkPointParaYIntersectDist(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 z,
|
|
f32 x, f32* yIntersect, f32 chkDist) {
|
|
if (IS_ZERO(ny)) {
|
|
return false;
|
|
}
|
|
|
|
if (Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 300.0f, chkDist, ny)) {
|
|
*yIntersect = (f32)((((-nx * x) - (nz * z)) - originDist) / ny);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaYIntersectInsideTri(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist,
|
|
f32 z, f32 x, f32* yIntersect, f32 chkDist) {
|
|
if (IS_ZERO(ny)) {
|
|
return false;
|
|
}
|
|
|
|
if (Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 0.0f, chkDist, ny)) {
|
|
*yIntersect = (f32)((((-nx * x) - (nz * z)) - originDist) / ny);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaY(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 ny, f32 z, f32 x) {
|
|
if (IS_ZERO(ny)) {
|
|
return false;
|
|
}
|
|
if (Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 300.0f, 1.0f, ny)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkLineSegParaYIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 z,
|
|
f32 x, f32* yIntersect, f32 y0, f32 y1) {
|
|
f32 pointADist;
|
|
f32 pointBDist;
|
|
Vec3f planePos;
|
|
|
|
if (IS_ZERO(ny)) {
|
|
return false;
|
|
}
|
|
|
|
planePos.x = x;
|
|
planePos.y = y0;
|
|
planePos.z = z;
|
|
|
|
pointADist = Math3D_Planef(nx, ny, nz, originDist, &planePos);
|
|
planePos.y = y1;
|
|
pointBDist = Math3D_Planef(nx, ny, nz, originDist, &planePos);
|
|
if (((pointADist > 0.0f) && (pointBDist > 0.0f)) || ((pointADist < 0.0f) && (pointBDist < 0.0f))) {
|
|
return false;
|
|
}
|
|
|
|
if (Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 300.0f, 1.0f, ny)) {
|
|
*yIntersect = (((-nx * x) - (nz * z)) - originDist) / ny;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaYDist(Vec3f* v0, Vec3f* v1, Vec3f* v2, Plane* plane, f32 z, f32 x, f32 chkDist) {
|
|
if (IS_ZERO(plane->normal.y)) {
|
|
return false;
|
|
}
|
|
|
|
if (Math3D_TriChkPointParaYImpl(v0, v1, v2, z, x, 0.0f, chkDist, plane->normal.y)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaXImpl(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 y, f32 z, f32 detMax, f32 chkDist, f32 nx) {
|
|
f32 detv0v1;
|
|
f32 detv1v2;
|
|
f32 detv2v0;
|
|
f32 distToEdgeSq;
|
|
f32 chkDistSq;
|
|
|
|
if (!Math3D_CirSquareVsTriSquare(v0->y, v0->z, v1->y, v1->z, v2->y, v2->z, y, z, chkDist)) {
|
|
return false;
|
|
}
|
|
|
|
chkDistSq = SQ(chkDist);
|
|
|
|
if (((SQ(v0->y - y) + SQ(v0->z - z)) < chkDistSq) || ((SQ(v1->y - y) + SQ(v1->z - z)) < chkDistSq) ||
|
|
((SQ(v2->y - y) + SQ(v2->z - z)) < chkDistSq)) {
|
|
return true;
|
|
}
|
|
|
|
detv0v1 = ((v0->y - y) * (v1->z - z)) - ((v0->z - z) * (v1->y - y));
|
|
detv1v2 = ((v1->y - y) * (v2->z - z)) - ((v1->z - z) * (v2->y - y));
|
|
detv2v0 = ((v2->y - y) * (v0->z - z)) - ((v2->z - z) * (v0->y - y));
|
|
|
|
if (((detv0v1 <= detMax) && (detv1v2 <= detMax) && (detv2v0 <= detMax)) ||
|
|
((-detMax <= detv0v1) && (-detMax <= detv1v2) && (-detMax <= detv2v0))) {
|
|
return true;
|
|
}
|
|
|
|
if (fabsf(nx) > 0.5f) {
|
|
|
|
if (Math3D_PointDistSqToLine2D(y, z, v0->y, v0->z, v1->y, v1->z, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) {
|
|
return true;
|
|
}
|
|
|
|
if (Math3D_PointDistSqToLine2D(y, z, v1->y, v1->z, v2->y, v2->z, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) {
|
|
return true;
|
|
}
|
|
|
|
if (Math3D_PointDistSqToLine2D(y, z, v2->y, v2->z, v0->y, v0->z, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaXDeterminate(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 y, f32 z, f32 detMax, f32 nx) {
|
|
return Math3D_TriChkPointParaXImpl(v0, v1, v2, y, z, detMax, 1.0f, nx);
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaXIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 y,
|
|
f32 z, f32* xIntersect) {
|
|
if (IS_ZERO(nx)) {
|
|
return false;
|
|
}
|
|
|
|
if (Math3D_TriChkPointParaXImpl(v0, v1, v2, y, z, 300.0f, 1.0f, nx)) {
|
|
*xIntersect = (((-ny * y) - (nz * z)) - originDist) / nx;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaX(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 y, f32 z) {
|
|
if (IS_ZERO(nx)) {
|
|
return false;
|
|
}
|
|
if (Math3D_TriChkPointParaXImpl(v0, v1, v2, y, z, 300.0f, 1.0f, nx)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkLineSegParaXIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 y,
|
|
f32 z, f32* xIntersect, f32 x0, f32 x1) {
|
|
static Vec3f planePos;
|
|
|
|
f32 pointADist;
|
|
f32 pointBDist;
|
|
|
|
if (IS_ZERO(nx)) {
|
|
return false;
|
|
}
|
|
|
|
planePos.x = x0;
|
|
planePos.y = y;
|
|
planePos.z = z;
|
|
pointADist = Math3D_Planef(nx, ny, nz, originDist, &planePos);
|
|
|
|
planePos.x = x1;
|
|
pointBDist = Math3D_Planef(nx, ny, nz, originDist, &planePos);
|
|
|
|
if (((pointADist > 0.0f) && (pointBDist > 0.0f)) || ((pointADist < 0.0f) && (pointBDist < 0.0f))) {
|
|
return false;
|
|
}
|
|
|
|
if (Math3D_TriChkPointParaXImpl(v0, v1, v2, y, z, 300.0f, 1.0f, nx)) {
|
|
*xIntersect = (((-ny * y) - (nz * z)) - originDist) / nx;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaXDist(Vec3f* v0, Vec3f* v1, Vec3f* v2, Plane* plane, f32 y, f32 z, f32 chkDist) {
|
|
if (IS_ZERO(plane->normal.x)) {
|
|
return false;
|
|
}
|
|
if (Math3D_TriChkPointParaXImpl(v0, v1, v2, y, z, 0.0f, chkDist, plane->normal.x)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaZImpl(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 x, f32 y, f32 detMax, f32 chkDist, f32 nz) {
|
|
f32 detv0v1;
|
|
f32 detv1v2;
|
|
f32 detv2v0;
|
|
f32 distToEdgeSq;
|
|
f32 chkDistSq;
|
|
|
|
if (!Math3D_CirSquareVsTriSquare(v0->x, v0->y, v1->x, v1->y, v2->x, v2->y, x, y, chkDist)) {
|
|
return false;
|
|
}
|
|
|
|
chkDistSq = SQ(chkDist);
|
|
|
|
if (((SQ(x - v0->x) + SQ(y - v0->y)) < chkDistSq) || ((SQ(x - v1->x) + SQ(y - v1->y)) < chkDistSq) ||
|
|
((SQ(x - v2->x) + SQ(y - v2->y)) < chkDistSq)) {
|
|
// Distance from any vertex to a point is less than chkDist
|
|
return true;
|
|
}
|
|
|
|
detv0v1 = ((v0->x - x) * (v1->y - y)) - ((v0->y - y) * (v1->x - x));
|
|
detv1v2 = ((v1->x - x) * (v2->y - y)) - ((v1->y - y) * (v2->x - x));
|
|
detv2v0 = ((v2->x - x) * (v0->y - y)) - ((v2->y - y) * (v0->x - x));
|
|
|
|
if (((detMax >= detv0v1) && (detMax >= detv1v2) && (detMax >= detv2v0)) ||
|
|
((-detMax <= detv0v1) && (-detMax <= detv1v2) && (-detMax <= detv2v0))) {
|
|
return true;
|
|
}
|
|
|
|
if (fabsf(nz) > 0.5f) {
|
|
|
|
if (Math3D_PointDistSqToLine2D(x, y, v0->x, v0->y, v1->x, v1->y, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) {
|
|
return true;
|
|
}
|
|
|
|
if (Math3D_PointDistSqToLine2D(x, y, v1->x, v1->y, v2->x, v2->y, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) {
|
|
return true;
|
|
}
|
|
|
|
if (Math3D_PointDistSqToLine2D(x, y, v2->x, v2->y, v0->x, v0->y, &distToEdgeSq) && (distToEdgeSq < chkDistSq)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaZDeterminate(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 x, f32 y, f32 detMax, f32 nz) {
|
|
return Math3D_TriChkPointParaZImpl(v0, v1, v2, x, y, detMax, 1.0f, nz);
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaZIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 x,
|
|
f32 y, f32* zIntersect) {
|
|
|
|
if (IS_ZERO(nz)) {
|
|
return false;
|
|
}
|
|
|
|
if (Math3D_TriChkPointParaZImpl(v0, v1, v2, x, y, 300.0f, 1.0f, nz)) {
|
|
*zIntersect = (f32)((((-nx * x) - (ny * y)) - originDist) / nz);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkPointParaZ(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nz, f32 x, f32 y) {
|
|
if (IS_ZERO(nz)) {
|
|
return false;
|
|
}
|
|
if (Math3D_TriChkPointParaZImpl(v0, v1, v2, x, y, 300.0f, 1.0f, nz)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkLineSegParaZIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, f32 x,
|
|
f32 y, f32* zIntersect, f32 z0, f32 z1) {
|
|
static Vec3f planePos;
|
|
|
|
f32 pointADist;
|
|
f32 pointBDist;
|
|
|
|
if (IS_ZERO(nz)) {
|
|
return false;
|
|
}
|
|
planePos.x = x;
|
|
planePos.y = y;
|
|
planePos.z = z0;
|
|
pointADist = Math3D_Planef(nx, ny, nz, originDist, &planePos);
|
|
|
|
planePos.z = z1;
|
|
pointBDist = Math3D_Planef(nx, ny, nz, originDist, &planePos);
|
|
if (((pointADist > 0.0f) && (pointBDist > 0.0f)) || ((pointADist < 0.0f) && (pointBDist < 0.0f))) {
|
|
// points on the line segment are on the same side of the plane
|
|
return false;
|
|
}
|
|
|
|
if (Math3D_TriChkPointParaZImpl(v0, v1, v2, x, y, 300.0f, 1.0f, nz)) {
|
|
*zIntersect = (((-nx * x) - (ny * y)) - originDist) / nz;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_TriChkLineSegParaZDist(Vec3f* v0, Vec3f* v1, Vec3f* v2, Plane* plane, f32 x, f32 y, f32 chkDist) {
|
|
if (IS_ZERO(plane->normal.z)) {
|
|
return false;
|
|
}
|
|
if (Math3D_TriChkPointParaZImpl(v0, v1, v2, x, y, 0.0f, chkDist, plane->normal.z)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_LineSegFindPlaneIntersect(f32 pointADist, f32 pointBDist, Vec3f* pointA, Vec3f* pointB, Vec3f* intersect) {
|
|
f32 distDiff;
|
|
|
|
distDiff = pointADist - pointBDist;
|
|
if (IS_ZERO(distDiff)) {
|
|
// both points lie on the plane.
|
|
*intersect = *pointB;
|
|
return false;
|
|
}
|
|
|
|
if (pointADist == 0.0f) {
|
|
// pointA is on the plane
|
|
*intersect = *pointA;
|
|
} else if (pointBDist == 0.0f) {
|
|
// pointB is on the plane
|
|
*intersect = *pointB;
|
|
} else {
|
|
// place the point at the intersection point.
|
|
Math3D_LineSplitRatio(pointA, pointB, pointADist / distDiff, intersect);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Determines if the line segment from `linePointA` to `linePointB` crosses the plane
|
|
* from `nx` + `ny` + `nz` + `originDist` = 0. If fromFront is set, then detection will only
|
|
* be true if point A crosses from the front of the plane
|
|
*/
|
|
s32 Math3D_LineSegVsPlane(f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* linePointA, Vec3f* linePointB,
|
|
Vec3f* intersect, s32 fromFront) {
|
|
f32 pointADist;
|
|
f32 pointBDist;
|
|
|
|
pointADist = Math3D_Planef(nx, ny, nz, originDist, linePointA);
|
|
pointBDist = Math3D_Planef(nx, ny, nz, originDist, linePointB);
|
|
|
|
if ((pointADist * pointBDist) > 0.0f) {
|
|
*intersect = *linePointB;
|
|
return false;
|
|
}
|
|
|
|
if (fromFront && (pointADist < 0.0f) && (pointBDist > 0.0f)) {
|
|
*intersect = *linePointB;
|
|
return false;
|
|
}
|
|
|
|
return Math3D_LineSegFindPlaneIntersect(pointADist, pointBDist, linePointA, linePointB, intersect);
|
|
}
|
|
|
|
/*
|
|
* Determines if the line formed by `linePointA` and `linePointB` intersect with Triangle formed from
|
|
* vertices `v0`, `v1`, and `v2` with normal vector `nx`, `ny`, and `nz` with plane distance from origin
|
|
* `originDist` Outputs the intersection point at to `intersect`
|
|
* Returns 1 if the line intersects with the triangle, 0 otherwise
|
|
*/
|
|
s32 Math3D_TriLineIntersect(Vec3f* v0, Vec3f* v1, Vec3f* v2, f32 nx, f32 ny, f32 nz, f32 originDist, Vec3f* linePointA,
|
|
Vec3f* linePointB, Vec3f* intersect, s32 fromFront) {
|
|
|
|
if (!Math3D_LineSegVsPlane(nx, ny, nz, originDist, linePointA, linePointB, intersect, fromFront)) {
|
|
return false;
|
|
}
|
|
|
|
if (((nx == 0.0f) || (Math3D_TriChkPointParaX(v0, v1, v2, nx, intersect->y, intersect->z))) &&
|
|
((ny == 0.0f) || (Math3D_TriChkPointParaY(v0, v1, v2, ny, intersect->z, intersect->x))) &&
|
|
((nz == 0.0f) || (Math3D_TriChkPointParaZ(v0, v1, v2, nz, intersect->x, intersect->y)))) {
|
|
return true;
|
|
}
|
|
|
|
*intersect = *linePointB;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Creates a TriNorm output to `tri`, and calculates the normal vector and plane from vertices
|
|
* `va`, `vb`, and `vc`
|
|
*/
|
|
void Math3D_TriNorm(TriNorm* tri, Vec3f* va, Vec3f* vb, Vec3f* vc) {
|
|
tri->vtx[0] = *va;
|
|
tri->vtx[1] = *vb;
|
|
tri->vtx[2] = *vc;
|
|
Math3D_DefPlane(va, vb, vc, &tri->plane.normal.x, &tri->plane.normal.y, &tri->plane.normal.z,
|
|
&tri->plane.originDist);
|
|
}
|
|
|
|
/*
|
|
* Determines if point `point` lies within `sphere`
|
|
*/
|
|
s32 Math3D_PointInSph(Sphere16* sphere, Vec3f* point) {
|
|
if (Math3D_DistXYZ16toF(&sphere->center, point) < sphere->radius) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Determines the distance from point (`x0`,`y0`) to the line formed from (`x1`,`y1`) and (`x2`,`y2`)
|
|
* Distance squared is output to `lineLenSq`, returns true if the point perpendicular from (`x0`,`y0`)
|
|
* is contained within the segment between (`x1`,`y1`) and (`x2`,`y2`)
|
|
*/
|
|
s32 Math3D_PointDistSqToLine2D(f32 x0, f32 y0, f32 x1, f32 y1, f32 x2, f32 y2, f32* lineLenSq) {
|
|
static Vec3f perpendicularPoint;
|
|
|
|
f32 perpendicularRatio;
|
|
f32 xDiff;
|
|
f32 distSq;
|
|
f32 yDiff;
|
|
s32 ret = false;
|
|
|
|
xDiff = x2 - x1;
|
|
yDiff = y2 - y1;
|
|
distSq = SQ(xDiff) + SQ(yDiff);
|
|
if (IS_ZERO(distSq)) {
|
|
*lineLenSq = 0.0f;
|
|
return false;
|
|
}
|
|
|
|
perpendicularRatio = (((x0 - x1) * xDiff) + (y0 - y1) * yDiff) / distSq;
|
|
if (perpendicularRatio >= 0.0f && perpendicularRatio <= 1.0f) {
|
|
ret = true;
|
|
}
|
|
perpendicularPoint.x = (xDiff * perpendicularRatio) + x1;
|
|
perpendicularPoint.y = (yDiff * perpendicularRatio) + y1;
|
|
*lineLenSq = SQ(perpendicularPoint.x - x0) + SQ(perpendicularPoint.y - y0);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Determines if the line `line` is touching the sphere `sphere` at any point in the line.
|
|
*/
|
|
s32 Math3D_LineVsSph(Sphere16* sphere, Linef* line) {
|
|
static Vec3f sphLinePerpendicularPoint;
|
|
|
|
Vec3f lineDiff;
|
|
f32 temp_f0_2;
|
|
f32 lineLenSq;
|
|
|
|
if ((Math3D_PointInSph(sphere, &line->a)) || (Math3D_PointInSph(sphere, &line->b))) {
|
|
// either point of the line is in the sphere.
|
|
return true;
|
|
}
|
|
lineDiff.x = line->b.x - line->a.x;
|
|
lineDiff.y = line->b.y - line->a.y;
|
|
lineDiff.z = line->b.z - line->a.z;
|
|
|
|
lineLenSq = SQ(lineDiff.x) + SQ(lineDiff.y) + SQ(lineDiff.z);
|
|
if (IS_ZERO(lineLenSq)) {
|
|
// line length is "0"
|
|
return false;
|
|
}
|
|
temp_f0_2 = ((((sphere->center.x - line->a.x) * lineDiff.x) + ((sphere->center.y - line->a.y) * lineDiff.y)) +
|
|
((sphere->center.z - line->a.z) * lineDiff.z)) /
|
|
lineLenSq;
|
|
if ((temp_f0_2 < 0.0f) || (temp_f0_2 > 1.0f)) {
|
|
return false;
|
|
}
|
|
|
|
sphLinePerpendicularPoint.x = (lineDiff.x * temp_f0_2) + line->a.x;
|
|
sphLinePerpendicularPoint.y = (lineDiff.y * temp_f0_2) + line->a.y;
|
|
sphLinePerpendicularPoint.z = (lineDiff.z * temp_f0_2) + line->a.z;
|
|
|
|
if (SQ(sphLinePerpendicularPoint.x - sphere->center.x) + SQ(sphLinePerpendicularPoint.y - sphere->center.y) +
|
|
SQ(sphLinePerpendicularPoint.z - sphere->center.z) <=
|
|
SQ((f32)sphere->radius)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Gets the surface point of `sphere` intersecting with `tri` generated from the line formed from the
|
|
* sphere's surface to the midpoint of the line formed from the first two vertices of the tri
|
|
*/
|
|
void Math3D_GetSphVsTriIntersectPoint(Sphere16* sphere, TriNorm* tri, Vec3f* intersectPoint) {
|
|
static Vec3f v0v1Center;
|
|
static Vec3f sphereCenter;
|
|
|
|
f32 dist;
|
|
f32 splitRatio;
|
|
|
|
v0v1Center.x = ((tri->vtx[0].x + tri->vtx[1].x) * 0.5f);
|
|
v0v1Center.y = ((tri->vtx[0].y + tri->vtx[1].y) * 0.5f);
|
|
v0v1Center.z = ((tri->vtx[0].z + tri->vtx[1].z) * 0.5f);
|
|
sphereCenter.x = sphere->center.x;
|
|
sphereCenter.y = sphere->center.y;
|
|
sphereCenter.z = sphere->center.z;
|
|
dist = Math3D_Vec3f_DistXYZ(&v0v1Center, &sphereCenter);
|
|
// Distance from the sphere's center to the center of the line formed from v0->v1
|
|
if (IS_ZERO(dist)) {
|
|
intersectPoint->x = sphereCenter.x;
|
|
intersectPoint->y = sphereCenter.y;
|
|
intersectPoint->z = sphereCenter.z;
|
|
return;
|
|
}
|
|
splitRatio = sphere->radius / dist;
|
|
Math3D_LineSplitRatio(&sphereCenter, &v0v1Center, splitRatio, intersectPoint);
|
|
}
|
|
|
|
/**
|
|
* Determines if `sphere` and `tri` and touching, and outputs the intersection point to `intersectPoint`
|
|
*/
|
|
s32 Math3D_TriVsSphIntersect(Sphere16* sphere, TriNorm* tri, Vec3f* intersectPoint) {
|
|
static Linef triTestLine;
|
|
static Vec3f sphereCenter;
|
|
static Vec3f sphPlanePos;
|
|
|
|
f32 radius;
|
|
f32 nx;
|
|
f32 ny;
|
|
f32 nz;
|
|
f32 planeDist;
|
|
|
|
sphereCenter.x = sphere->center.x;
|
|
sphereCenter.y = sphere->center.y;
|
|
sphereCenter.z = sphere->center.z;
|
|
radius = sphere->radius;
|
|
|
|
if (!Math3D_SphCubeVsTriCube(&tri->vtx[0], &tri->vtx[1], &tri->vtx[2], &sphereCenter, radius)) {
|
|
return false;
|
|
}
|
|
|
|
planeDist = Math3D_UDistPlaneToPos(tri->plane.normal.x, tri->plane.normal.y, tri->plane.normal.z,
|
|
tri->plane.originDist, &sphereCenter);
|
|
if (radius < planeDist) {
|
|
// the point that lies within the plane of the triangle which is perpendicular to the sphere's center is more
|
|
// than the radius of the sphere, the plane never crosses the sphere.
|
|
return false;
|
|
}
|
|
|
|
// tests if any of the edges of the triangle are intersecting the sphere
|
|
triTestLine.a = tri->vtx[0];
|
|
triTestLine.b = tri->vtx[1];
|
|
if (Math3D_LineVsSph(sphere, &triTestLine)) {
|
|
Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint);
|
|
return true;
|
|
}
|
|
|
|
triTestLine.a = tri->vtx[1];
|
|
triTestLine.b = tri->vtx[2];
|
|
if (Math3D_LineVsSph(sphere, &triTestLine)) {
|
|
Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint);
|
|
return true;
|
|
}
|
|
|
|
triTestLine.a = tri->vtx[2];
|
|
triTestLine.b = tri->vtx[0];
|
|
if (Math3D_LineVsSph(sphere, &triTestLine)) {
|
|
Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint);
|
|
return true;
|
|
}
|
|
|
|
nx = tri->plane.normal.x * planeDist;
|
|
ny = tri->plane.normal.y * planeDist;
|
|
nz = tri->plane.normal.z * planeDist;
|
|
|
|
if (Math3D_Planef(tri->plane.normal.x, tri->plane.normal.y, tri->plane.normal.z, tri->plane.originDist,
|
|
&sphereCenter) > 0.0f) {
|
|
sphPlanePos.x = sphereCenter.x - nx;
|
|
sphPlanePos.y = sphereCenter.y - ny;
|
|
sphPlanePos.z = sphereCenter.z - nz;
|
|
} else {
|
|
sphPlanePos.x = sphereCenter.x + nx;
|
|
sphPlanePos.y = sphereCenter.y + ny;
|
|
sphPlanePos.z = sphereCenter.z + nz;
|
|
}
|
|
|
|
if (fabsf(tri->plane.normal.y) > 0.5f) {
|
|
if (Math3D_TriChkPointParaYDeterminate(&tri->vtx[0], &tri->vtx[1], &tri->vtx[2], sphPlanePos.z, sphPlanePos.x,
|
|
0.0f, tri->plane.normal.y)) {
|
|
Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint);
|
|
return true;
|
|
}
|
|
} else if (fabsf(tri->plane.normal.x) > 0.5f) {
|
|
if (Math3D_TriChkPointParaXDeterminate(&tri->vtx[0], &tri->vtx[1], &tri->vtx[2], sphPlanePos.y, sphPlanePos.z,
|
|
0.0f, tri->plane.normal.x)) {
|
|
Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint);
|
|
return true;
|
|
}
|
|
} else if (Math3D_TriChkPointParaZDeterminate(&tri->vtx[0], &tri->vtx[1], &tri->vtx[2], sphPlanePos.x,
|
|
sphPlanePos.y, 0.0f, tri->plane.normal.z)) {
|
|
Math3D_GetSphVsTriIntersectPoint(sphere, tri, intersectPoint);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Checks if point `point` is within cylinder `cyl`
|
|
* Returns 1 if the point is inside the cylinder, 0 otherwise.
|
|
*/
|
|
s32 Math3D_PointInCyl(Cylinder16* cyl, Vec3f* point) {
|
|
f32 bottom;
|
|
f32 top;
|
|
f32 x;
|
|
f32 z;
|
|
|
|
x = cyl->pos.x - point->x;
|
|
z = cyl->pos.z - point->z;
|
|
bottom = (f32)cyl->pos.y + cyl->yShift;
|
|
top = cyl->height + bottom;
|
|
|
|
if ((SQ(x) + SQ(z)) < SQ(cyl->radius) && (bottom < point->y) && (point->y < top)) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
s32 Math3D_CylVsLineSeg(Cylinder16* cyl, Vec3f* linePointA, Vec3f* linePointB, Vec3f* intersectA, Vec3f* intersectB) {
|
|
Vec3f cylToPtA;
|
|
Vec3f cylToPtB;
|
|
Vec3f ptAToPtB;
|
|
f32 fracA;
|
|
f32 fracB;
|
|
f32 fracBase;
|
|
f32 zero = 0.0f;
|
|
f32 pad;
|
|
f32 cylRadiusSq;
|
|
f32 radSqDiff;
|
|
f32 distCent2;
|
|
f32 dot2AB;
|
|
s32 sideIntA;
|
|
s32 sideIntB;
|
|
s32 intBeyondA;
|
|
s32 intBeyondB;
|
|
s32 intFlags = 0;
|
|
Vec3f intPts[4];
|
|
s32 count;
|
|
s32 i;
|
|
|
|
if (Math3D_PointInCyl(cyl, linePointA) && Math3D_PointInCyl(cyl, linePointB)) {
|
|
// both points are in the cylinder
|
|
*intersectA = *linePointA;
|
|
*intersectB = *linePointB;
|
|
return 2;
|
|
}
|
|
|
|
cylToPtA.x = linePointA->x - cyl->pos.x;
|
|
cylToPtA.y = linePointA->y - cyl->pos.y - cyl->yShift;
|
|
cylToPtA.z = linePointA->z - cyl->pos.z;
|
|
cylToPtB.x = linePointB->x - cyl->pos.x;
|
|
cylToPtB.y = linePointB->y - cyl->pos.y - cyl->yShift;
|
|
cylToPtB.z = linePointB->z - cyl->pos.z;
|
|
Math_Vec3f_Diff(&cylToPtB, &cylToPtA, &ptAToPtB);
|
|
cylRadiusSq = SQ(cyl->radius);
|
|
|
|
/**
|
|
* This section checks for intersections with the cylinder's base and top
|
|
*/
|
|
if (!IS_ZERO(ptAToPtB.y)) {
|
|
// fraction of length along AB to reach y = 0
|
|
fracBase = -cylToPtA.y / ptAToPtB.y;
|
|
if ((0.0f <= fracBase) && (fracBase <= 1.0f)) {
|
|
f32 baseIntX = (ptAToPtB.x * fracBase) + cylToPtA.x;
|
|
f32 baseIntZ = (ptAToPtB.z * fracBase) + cylToPtA.z;
|
|
|
|
if (SQ(baseIntX) + SQ(baseIntZ) < cylRadiusSq) {
|
|
// adds base intersection point to intPts and sets its flag
|
|
intPts[0].x = cyl->pos.x + baseIntX;
|
|
intPts[0].y = (f32)cyl->pos.y + cyl->yShift;
|
|
intPts[0].z = cyl->pos.z + baseIntZ;
|
|
intFlags |= 1;
|
|
}
|
|
}
|
|
// fraction of length along AB to reach y = cyl->height
|
|
fracA = (cyl->height - cylToPtA.y) / ptAToPtB.y;
|
|
if ((0.0f <= fracA) && (fracA <= 1.0f)) {
|
|
f32 topIntX = ptAToPtB.x * fracA + cylToPtA.x;
|
|
f32 topIntZ = ptAToPtB.z * fracA + cylToPtA.z;
|
|
|
|
if (SQ(topIntX) + SQ(topIntZ) < cylRadiusSq) {
|
|
// adds top intersection point to intPts and sets its flag
|
|
intPts[1].x = cyl->pos.x + topIntX;
|
|
intPts[1].y = (f32)cyl->pos.y + cyl->yShift + cyl->height;
|
|
intPts[1].z = cyl->pos.z + topIntZ;
|
|
intFlags |= 2;
|
|
}
|
|
}
|
|
}
|
|
/**
|
|
* This section finds the points of intersection of the infinite line containing AB with the side of the infinite
|
|
* cylinder containing cyl. Intersection points beyond the bounds of the segment and cylinder are filtered out
|
|
* afterward.
|
|
*/
|
|
radSqDiff = SQXZ(cylToPtA) - cylRadiusSq;
|
|
if (!IS_ZERO(2.0f * SQXZ(ptAToPtB))) {
|
|
dot2AB = 2.0f * DOTXZ(ptAToPtB, cylToPtA);
|
|
if (SQ(dot2AB) < 4.0f * SQXZ(ptAToPtB) * radSqDiff) {
|
|
// Line's closest xz-approach is outside cylinder. No intersections.
|
|
return 0;
|
|
}
|
|
if (SQ(dot2AB) - (4.0f * SQXZ(ptAToPtB) * radSqDiff) > zero) {
|
|
sideIntA = sideIntB = 1;
|
|
} else {
|
|
// Line is tangent in xz-plane. At most 1 side intersection.
|
|
sideIntA = 1;
|
|
sideIntB = 0;
|
|
}
|
|
distCent2 = sqrtf(SQ(dot2AB) - (4.0f * SQXZ(ptAToPtB) * radSqDiff));
|
|
if (sideIntA == 1) {
|
|
// fraction of length along AB for side intersection closer to A
|
|
fracA = (distCent2 - dot2AB) / (2.0f * SQXZ(ptAToPtB));
|
|
}
|
|
if (sideIntB == 1) {
|
|
// fraction of length along AB for side intersection closer to B
|
|
fracB = (-dot2AB - distCent2) / (2.0f * SQXZ(ptAToPtB));
|
|
}
|
|
} else if (!IS_ZERO(2.0f * DOTXZ(ptAToPtB, cylToPtA))) {
|
|
// Used if the line segment is nearly vertical. Unclear what it's calculating.
|
|
fracA = -radSqDiff / (2.0f * DOTXZ(ptAToPtB, cylToPtA));
|
|
sideIntA = 1;
|
|
sideIntB = 0;
|
|
} else {
|
|
return 0;
|
|
}
|
|
// checks for intersection points outside the bounds of the segment
|
|
if (!sideIntB) {
|
|
if (fracA < 0.0f || 1.0f < fracA) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
intBeyondA = fracA < 0.0f || 1.0f < fracA;
|
|
intBeyondB = fracB < 0.0f || 1.0f < fracB;
|
|
if (intBeyondA && intBeyondB) {
|
|
return 0;
|
|
}
|
|
if (intBeyondA) {
|
|
sideIntA = 0;
|
|
}
|
|
if (intBeyondB) {
|
|
sideIntB = 0;
|
|
}
|
|
}
|
|
// checks for intersection points outside the bounds of the cylinder
|
|
if ((sideIntA == 1) &&
|
|
((fracA * ptAToPtB.y + cylToPtA.y) < 0.0f || cyl->height < (fracA * ptAToPtB.y + cylToPtA.y))) {
|
|
sideIntA = 0;
|
|
}
|
|
if ((sideIntB == 1) &&
|
|
((fracB * ptAToPtB.y + cylToPtA.y) < 0.0f || cyl->height < (fracB * ptAToPtB.y + cylToPtA.y))) {
|
|
sideIntB = 0;
|
|
}
|
|
if (sideIntA == 0 && sideIntB == 0) {
|
|
return 0;
|
|
}
|
|
// Adds intersection points to intPts and sets side A and side B flags
|
|
if (sideIntA == 1 && sideIntB == 1) {
|
|
intPts[2].x = (fracA * ptAToPtB.x + cylToPtA.x) + cyl->pos.x;
|
|
intPts[2].y = (fracA * ptAToPtB.y + cylToPtA.y) + cyl->pos.y + cyl->yShift;
|
|
intPts[2].z = (fracA * ptAToPtB.z + cylToPtA.z) + cyl->pos.z;
|
|
intFlags |= 4;
|
|
intPts[3].x = (fracB * ptAToPtB.x + cylToPtA.x) + cyl->pos.x;
|
|
intPts[3].y = (fracB * ptAToPtB.y + cylToPtA.y) + cyl->pos.y + cyl->yShift;
|
|
intPts[3].z = (fracB * ptAToPtB.z + cylToPtA.z) + cyl->pos.z;
|
|
intFlags |= 8;
|
|
} else if (sideIntA == 1) {
|
|
intPts[2].x = (fracA * ptAToPtB.x + cylToPtA.x) + cyl->pos.x;
|
|
intPts[2].y = (fracA * ptAToPtB.y + cylToPtA.y) + cyl->pos.y + cyl->yShift;
|
|
intPts[2].z = (fracA * ptAToPtB.z + cylToPtA.z) + cyl->pos.z;
|
|
intFlags |= 4;
|
|
} else if (sideIntB == 1) {
|
|
intPts[2].x = (fracB * ptAToPtB.x + cylToPtA.x) + cyl->pos.x;
|
|
intPts[2].y = (fracB * ptAToPtB.y + cylToPtA.y) + cyl->pos.y + cyl->yShift;
|
|
intPts[2].z = (fracB * ptAToPtB.z + cylToPtA.z) + cyl->pos.z;
|
|
intFlags |= 4;
|
|
}
|
|
|
|
/**
|
|
* Places the found intersection points into intersectA and intersectB. IntersectA is always closer to point A
|
|
*/
|
|
for (count = 0, i = 0; i < 4; i++) {
|
|
if (intFlags & (1 << i)) {
|
|
if (count == 0) {
|
|
*intersectA = intPts[i];
|
|
} else if (count == 1) {
|
|
if (Math3D_Vec3fDistSq(intersectA, linePointA) < Math3D_Vec3fDistSq(intersectA, &intPts[i])) {
|
|
*intersectB = intPts[i];
|
|
} else {
|
|
*intersectB = *intersectA;
|
|
*intersectA = intPts[i];
|
|
}
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Determines if `cyl` and `tri` are touching. The point of intersection
|
|
* is placed in `intersect` Returns 1 if they are touching, 0 otherwise.
|
|
*/
|
|
s32 Math3D_CylTriVsIntersect(Cylinder16* cyl, TriNorm* tri, Vec3f* intersect) {
|
|
static Sphere16 topSphere;
|
|
static Sphere16 bottomSphere;
|
|
static Vec3f cylIntersectA;
|
|
static Vec3f cylIntersectB;
|
|
|
|
f32 yIntersect;
|
|
f32 cylTop;
|
|
f32 cylBottom;
|
|
f32 minDistSq;
|
|
f32 radiusTodistFromCylYIntersectTov0v1;
|
|
f32 distFromPointAToIntersectASq;
|
|
Vec3f cylIntersectCenter;
|
|
Vec3f midpointv0v1;
|
|
Vec3f diffMidpointIntersect;
|
|
s32 pad;
|
|
|
|
cylBottom = (f32)cyl->pos.y + cyl->yShift;
|
|
cylTop = cyl->height + cylBottom;
|
|
|
|
if (((tri->vtx[0].y < cylBottom) && (tri->vtx[1].y < cylBottom) && (tri->vtx[2].y < cylBottom)) ||
|
|
((cylTop < tri->vtx[0].y) && (cylTop < tri->vtx[1].y) && (cylTop < tri->vtx[2].y))) {
|
|
// If all of the vertices are below or all of the vertices are above the cylinder.
|
|
return false;
|
|
}
|
|
|
|
minDistSq = 1.e38f;
|
|
if (Math3D_CylVsLineSeg(cyl, &tri->vtx[0], &tri->vtx[1], &cylIntersectA, &cylIntersectB)) {
|
|
distFromPointAToIntersectASq = Math3D_Vec3fDistSq(&cylIntersectA, &tri->vtx[0]);
|
|
minDistSq = distFromPointAToIntersectASq;
|
|
*intersect = cylIntersectA;
|
|
}
|
|
|
|
if (Math3D_CylVsLineSeg(cyl, &tri->vtx[2], &tri->vtx[1], &cylIntersectA, &cylIntersectB)) {
|
|
distFromPointAToIntersectASq = Math3D_Vec3fDistSq(&cylIntersectA, &tri->vtx[2]);
|
|
if (distFromPointAToIntersectASq < minDistSq) {
|
|
*intersect = cylIntersectA;
|
|
minDistSq = distFromPointAToIntersectASq;
|
|
}
|
|
}
|
|
|
|
if (Math3D_CylVsLineSeg(cyl, &tri->vtx[0], &tri->vtx[2], &cylIntersectA, &cylIntersectB)) {
|
|
distFromPointAToIntersectASq = Math3D_Vec3fDistSq(&cylIntersectA, &tri->vtx[0]);
|
|
if (distFromPointAToIntersectASq < minDistSq) {
|
|
*intersect = cylIntersectA;
|
|
minDistSq = distFromPointAToIntersectASq;
|
|
}
|
|
}
|
|
|
|
if (minDistSq != 1.e38f) {
|
|
return true;
|
|
}
|
|
|
|
if (Math3D_TriChkLineSegParaYIntersect(&tri->vtx[0], &tri->vtx[1], &tri->vtx[2], tri->plane.normal.x,
|
|
tri->plane.normal.y, tri->plane.normal.z, tri->plane.originDist, cyl->pos.z,
|
|
cyl->pos.x, &yIntersect, cylBottom, cylTop)) {
|
|
f32 distFromCylYIntersectTov0v1;
|
|
|
|
cylIntersectCenter.x = cyl->pos.x;
|
|
cylIntersectCenter.y = yIntersect;
|
|
cylIntersectCenter.z = cyl->pos.z;
|
|
|
|
midpointv0v1.x = (tri->vtx[0].x + tri->vtx[1].x) * 0.5f;
|
|
midpointv0v1.y = (tri->vtx[0].y + tri->vtx[1].y) * 0.5f;
|
|
midpointv0v1.z = (tri->vtx[0].z + tri->vtx[1].z) * 0.5f;
|
|
|
|
Math_Vec3f_Diff(&midpointv0v1, &cylIntersectCenter, &diffMidpointIntersect);
|
|
distFromCylYIntersectTov0v1 = sqrtf(SQ(diffMidpointIntersect.x) + SQ(diffMidpointIntersect.z));
|
|
|
|
if (IS_ZERO(distFromCylYIntersectTov0v1)) {
|
|
Math_Vec3f_Copy(intersect, &midpointv0v1);
|
|
return true;
|
|
}
|
|
|
|
radiusTodistFromCylYIntersectTov0v1 = cyl->radius / distFromCylYIntersectTov0v1;
|
|
Math3D_PointOnInfiniteLine(&cylIntersectCenter, &diffMidpointIntersect, radiusTodistFromCylYIntersectTov0v1,
|
|
intersect);
|
|
return true;
|
|
}
|
|
|
|
topSphere.center.x = bottomSphere.center.x = cyl->pos.x;
|
|
topSphere.center.z = bottomSphere.center.z = cyl->pos.z;
|
|
topSphere.center.y = cylTop;
|
|
bottomSphere.center.y = cylBottom;
|
|
topSphere.radius = bottomSphere.radius = cyl->radius;
|
|
|
|
if ((Math3D_TriVsSphIntersect(&topSphere, tri, intersect)) ||
|
|
(Math3D_TriVsSphIntersect(&bottomSphere, tri, intersect))) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Determines if `cyl` and `tri` are touching.
|
|
*/
|
|
s32 Math3D_CylVsTri(Cylinder16* cyl, TriNorm* tri) {
|
|
Vec3f intersect;
|
|
|
|
return Math3D_CylTriVsIntersect(cyl, tri, &intersect);
|
|
}
|
|
|
|
/*
|
|
* Determines if two spheres are touching.
|
|
*/
|
|
s32 Math3D_SphVsSph(Sphere16* sphereA, Sphere16* sphereB) {
|
|
f32 overlapSize;
|
|
|
|
return Math3D_SphVsSphOverlap(sphereA, sphereB, &overlapSize);
|
|
}
|
|
|
|
/*
|
|
* Determines if two spheres are touching. The amount that they're overlapping is placed in `overlapSize`
|
|
*/
|
|
s32 Math3D_SphVsSphOverlap(Sphere16* sphereA, Sphere16* sphereB, f32* overlapSize) {
|
|
f32 centerDist;
|
|
|
|
return Math3D_SphVsSphOverlapCenterDist(sphereA, sphereB, overlapSize, ¢erDist);
|
|
}
|
|
|
|
/*
|
|
* Determines if two spheres are touching The distance from the centers is placed in `centerDist`,
|
|
* and the amount that they're overlapping is placed in `overlapSize`
|
|
*/
|
|
s32 Math3D_SphVsSphOverlapCenterDist(Sphere16* sphereA, Sphere16* sphereB, f32* overlapSize, f32* centerDist) {
|
|
Vec3f diff;
|
|
|
|
diff.x = (f32)sphereA->center.x - (f32)sphereB->center.x;
|
|
diff.y = (f32)sphereA->center.y - (f32)sphereB->center.y;
|
|
diff.z = (f32)sphereA->center.z - (f32)sphereB->center.z;
|
|
|
|
*centerDist = sqrt(SQ(diff.x) + SQ(diff.y) + SQ(diff.z));
|
|
|
|
*overlapSize = (((f32)sphereA->radius + (f32)sphereB->radius) - *centerDist);
|
|
if (*overlapSize > 0.008f) {
|
|
return true;
|
|
}
|
|
|
|
*overlapSize = 0.0f;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Checks if `sph` and `cyl` are touching, output the amount of xz overlap to `overlapSize`
|
|
*/
|
|
s32 Math3D_SphVsCylOverlap(Sphere16* sph, Cylinder16* cyl, f32* overlapSize) {
|
|
f32 centerDist;
|
|
|
|
return Math3D_SphVsCylOverlapCenterDist(sph, cyl, overlapSize, ¢erDist);
|
|
}
|
|
|
|
/**
|
|
* Checks if `sph` and `cyl` are touching, output the xz distance of the centers to `centerDist`, and the amount of
|
|
* xz overlap to `overlapSize`
|
|
*/
|
|
s32 Math3D_SphVsCylOverlapCenterDist(Sphere16* sph, Cylinder16* cyl, f32* overlapSize, f32* centerDist) {
|
|
static Cylinderf cylf;
|
|
static Spheref sphf;
|
|
|
|
f32 x;
|
|
f32 z;
|
|
f32 combinedRadius;
|
|
f32 cylBottom;
|
|
f32 cylTop;
|
|
f32 sphBottom;
|
|
f32 sphTop;
|
|
|
|
if (sph->radius <= 0 || cyl->radius <= 0) {
|
|
// either radius is 0
|
|
return false;
|
|
}
|
|
sphf.center.y = sph->center.y;
|
|
sphf.radius = sph->radius;
|
|
cylf.pos.y = cyl->pos.y;
|
|
cylf.yShift = cyl->yShift;
|
|
cylf.height = cyl->height;
|
|
x = (f32)sph->center.x - cyl->pos.x;
|
|
z = (f32)sph->center.z - cyl->pos.z;
|
|
combinedRadius = (f32)sph->radius + cyl->radius;
|
|
*centerDist = sqrtf(SQ(x) + SQ(z));
|
|
if (combinedRadius < *centerDist) {
|
|
// if the combined radii is less than the distance to the centers, they cannot be touching.
|
|
return false;
|
|
}
|
|
|
|
cylBottom = (cylf.pos.y + cylf.yShift);
|
|
cylTop = cylBottom + cylf.height;
|
|
sphBottom = sphf.center.y - sphf.radius;
|
|
sphTop = sphf.center.y + sphf.radius;
|
|
|
|
if ((sphTop >= cylBottom) && (sphBottom <= cylTop)) {
|
|
// if the cylinder and sphere are intersecting on the xz plane, check if they're intersecting on
|
|
// the y axis.
|
|
*overlapSize = combinedRadius - *centerDist;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Checks if `ca` and `cb` are touching, output the amount of xz overlap to `overlapSize`
|
|
*/
|
|
s32 Math3D_CylVsCylOverlap(Cylinder16* ca, Cylinder16* cb, f32* overlapSize) {
|
|
f32 xzDist;
|
|
|
|
return Math3D_CylVsCylOverlapCenterDist(ca, cb, overlapSize, &xzDist);
|
|
}
|
|
|
|
/**
|
|
* Checks if `ca` and `cb` are touching, output the xz distance of the centers to `centerDist`, and the amount of
|
|
* xz overlap to `overlapSize`
|
|
*/
|
|
s32 Math3D_CylVsCylOverlapCenterDist(Cylinder16* ca, Cylinder16* cb, f32* overlapSize, f32* centerDist) {
|
|
static Cylinderf caf;
|
|
static Cylinderf cbf;
|
|
|
|
Math_Vec3s_ToVec3f(&caf.pos, &ca->pos);
|
|
caf.radius = ca->radius;
|
|
caf.yShift = ca->yShift;
|
|
caf.height = ca->height;
|
|
|
|
Math_Vec3s_ToVec3f(&cbf.pos, &cb->pos);
|
|
cbf.radius = cb->radius;
|
|
cbf.yShift = cb->yShift;
|
|
cbf.height = cb->height;
|
|
|
|
*centerDist = sqrtf(SQ(caf.pos.x - cbf.pos.x) + SQ(caf.pos.z - cbf.pos.z));
|
|
|
|
// The combined radii are within the xz distance
|
|
if ((caf.radius + cbf.radius) < *centerDist) {
|
|
return false;
|
|
}
|
|
|
|
// top of ca < bottom of cb or top of cb < bottom of ca
|
|
if (((caf.pos.y + caf.yShift) + caf.height) < (cbf.pos.y + cbf.yShift) ||
|
|
(((cbf.pos.y + cbf.yShift) + cbf.height) < (caf.pos.y + caf.yShift))) {
|
|
return false;
|
|
}
|
|
|
|
*overlapSize = caf.radius + cbf.radius - *centerDist;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Determines if triangle `ta` intersects with triangle `tb` the point of
|
|
* intersection is output to `intersect.
|
|
* Returns 1 is the triangles intersect, 0 otherwise
|
|
*/
|
|
s32 Math3D_TriVsTriIntersect(TriNorm* ta, TriNorm* tb, Vec3f* intersect) {
|
|
f32 dist0;
|
|
f32 dist1;
|
|
f32 dist2;
|
|
|
|
dist0 = Math3D_Plane(&ta->plane, &tb->vtx[0]);
|
|
dist1 = Math3D_Plane(&ta->plane, &tb->vtx[1]);
|
|
dist2 = Math3D_Plane(&ta->plane, &tb->vtx[2]);
|
|
|
|
if (((dist0 > 0.0f) && (dist1 > 0.0f) && (dist2 > 0.0f)) ||
|
|
(((dist0 < 0.0f) && (dist1 < 0.0f)) && (dist2 < 0.0f))) {
|
|
return false;
|
|
}
|
|
|
|
dist0 = Math3D_Plane(&tb->plane, &ta->vtx[0]);
|
|
dist1 = Math3D_Plane(&tb->plane, &ta->vtx[1]);
|
|
dist2 = Math3D_Plane(&tb->plane, &ta->vtx[2]);
|
|
|
|
if ((((dist0 > 0.0f) && (dist1 > 0.0f)) && (dist2 > 0.0f)) ||
|
|
((dist0 < 0.0f) && (dist1 < 0.0f) && (dist2 < 0.0f))) {
|
|
return false;
|
|
}
|
|
|
|
if (Math3D_TriLineIntersect(&tb->vtx[0], &tb->vtx[1], &tb->vtx[2], tb->plane.normal.x, tb->plane.normal.y,
|
|
tb->plane.normal.z, tb->plane.originDist, &ta->vtx[0], &ta->vtx[1], intersect, 0)) {
|
|
return true;
|
|
}
|
|
if (Math3D_TriLineIntersect(&tb->vtx[0], &tb->vtx[1], &tb->vtx[2], tb->plane.normal.x, tb->plane.normal.y,
|
|
tb->plane.normal.z, tb->plane.originDist, &ta->vtx[1], &ta->vtx[2], intersect, 0)) {
|
|
return true;
|
|
}
|
|
if (Math3D_TriLineIntersect(&tb->vtx[0], &tb->vtx[1], &tb->vtx[2], tb->plane.normal.x, tb->plane.normal.y,
|
|
tb->plane.normal.z, tb->plane.originDist, &ta->vtx[2], &ta->vtx[0], intersect, 0)) {
|
|
return true;
|
|
}
|
|
if (Math3D_TriLineIntersect(&ta->vtx[0], &ta->vtx[1], &ta->vtx[2], ta->plane.normal.x, ta->plane.normal.y,
|
|
ta->plane.normal.z, ta->plane.originDist, &tb->vtx[0], &tb->vtx[1], intersect,
|
|
0) == 1) {
|
|
return true;
|
|
}
|
|
if (Math3D_TriLineIntersect(&ta->vtx[0], &ta->vtx[1], &ta->vtx[2], ta->plane.normal.x, ta->plane.normal.y,
|
|
ta->plane.normal.z, ta->plane.originDist, &tb->vtx[1], &tb->vtx[2], intersect,
|
|
0) == 1) {
|
|
return true;
|
|
}
|
|
if (Math3D_TriLineIntersect(&ta->vtx[0], &ta->vtx[1], &ta->vtx[2], ta->plane.normal.x, ta->plane.normal.y,
|
|
ta->plane.normal.z, ta->plane.originDist, &tb->vtx[2], &tb->vtx[0], intersect,
|
|
0) == 1) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_XZInSphere(Sphere16* sphere, f32 x, f32 z) {
|
|
f32 xDiff;
|
|
f32 zDiff;
|
|
|
|
xDiff = sphere->center.x - x;
|
|
zDiff = sphere->center.z - z;
|
|
if ((SQ(xDiff) + SQ(zDiff)) <= SQ(sphere->radius)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_XYInSphere(Sphere16* sphere, f32 x, f32 y) {
|
|
f32 xDiff;
|
|
f32 yDiff;
|
|
|
|
xDiff = sphere->center.x - x;
|
|
yDiff = sphere->center.y - y;
|
|
if ((SQ(xDiff) + SQ(yDiff)) <= SQ(sphere->radius)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
s32 Math3D_YZInSphere(Sphere16* sphere, f32 y, f32 z) {
|
|
f32 yDiff;
|
|
f32 zDiff;
|
|
|
|
yDiff = sphere->center.y - y;
|
|
zDiff = sphere->center.z - z;
|
|
if ((SQ(yDiff) + SQ(zDiff)) <= SQ(sphere->radius)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#if OOT_DEBUG
|
|
void Math3D_DrawSphere(PlayState* play, Sphere16* sph) {
|
|
}
|
|
|
|
void Math3D_DrawCylinder(PlayState* play, Cylinder16* cyl) {
|
|
}
|
|
#endif
|