re3/src/core/Collision.cpp
2020-08-20 12:53:17 +02:00

3164 lines
87 KiB
C++

#include "common.h"
#include "VuVector.h"
#include "main.h"
#include "Lists.h"
#include "Game.h"
#include "Zones.h"
#include "General.h"
#include "ZoneCull.h"
#include "World.h"
#include "Entity.h"
#include "Train.h"
#include "Streaming.h"
#include "Pad.h"
#include "DMAudio.h"
#include "Population.h"
#include "FileLoader.h"
#include "Replay.h"
#include "CutsceneMgr.h"
#include "RenderBuffer.h"
#include "SurfaceTable.h"
#include "Lines.h"
#include "Collision.h"
#include "Camera.h"
#include "ColStore.h"
//--MIAMI: file done
// TODO: where do these go?
#ifdef VU_COLLISION
struct VuTriangle
{
// Compressed int16 but unpacked
#ifdef GTA_PS2
uint128 v0;
uint128 v1;
uint128 v2;
uint128 plane;
#else
int32 v0[4];
int32 v1[4];
int32 v2[4];
int32 plane[4];
#endif
};
#ifndef GTA_PS2
static int16 vi01;
static CVuVector vf01;
static CVuVector vf02;
static CVuVector vf03;
CVuVector
DistanceBetweenSphereAndLine(const CVuVector &center, const CVuVector &p0, const CVuVector &line)
{
// center VF12
// p0 VF14
// line VF15
CVuVector ret; // VF16
CVuVector p1 = p0+line;
CVuVector dist0 = center - p0; // VF20
CVuVector dist1 = center - p1; // VF25
float lenSq = line.MagnitudeSqr(); // VF21
float distSq0 = dist0.MagnitudeSqr(); // VF22
float distSq1 = dist1.MagnitudeSqr();
float dot = DotProduct(dist0, line); // VF23
if(dot < 0.0f){
// not above line, closest to p0
ret = p0;
ret.w = distSq0;
return ret;
}
float t = dot/lenSq; // param of nearest point on infinite line
if(t > 1.0f){
// not above line, closest to p1
ret = p1;
ret.w = distSq1;
return ret;
}
// closest to line
ret = p0 + line*t;
ret.w = (ret - center).MagnitudeSqr();
return ret;
}
inline int SignFlags(const CVector &v)
{
int f = 0;
if(v.x < 0.0f) f |= 1;
if(v.y < 0.0f) f |= 2;
if(v.z < 0.0f) f |= 4;
return f;
}
#endif
extern "C" void
LineToTriangleCollision(const CVuVector &p0, const CVuVector &p1,
const CVuVector &v0, const CVuVector &v1, const CVuVector &v2,
const CVuVector &plane)
{
#ifdef GTA_PS2
__asm__ volatile (
".set noreorder\n"
"lqc2 vf12, 0x0(%0)\n"
"lqc2 vf13, 0x0(%1)\n"
"lqc2 vf14, 0x0(%2)\n"
"lqc2 vf15, 0x0(%3)\n"
"lqc2 vf16, 0x0(%4)\n"
"lqc2 vf17, 0x0(%5)\n"
"vcallms Vu0LineToTriangleCollisionStart\n"
".set reorder\n"
:
: "r" (&p0), "r" (&p1), "r" (&v0), "r" (&v1), "r" (&v2), "r" (&plane)
);
#else
float dot0 = DotProduct(plane, p0);
float dot1 = DotProduct(plane, p1);
float dist0 = plane.w - dot0;
float dist1 = plane.w - dot1;
// if points are on the same side, no collision
if(dist0 * dist1 > 0.0f){
vi01 = 0;
return;
}
CVuVector diff = p1 - p0;
float t = dist0/(dot1 - dot0);
CVuVector p = p0 + diff*t;
p.w = 0.0f;
vf01 = p;
vf03.x = t;
// Check if point is inside
CVector cross1 = CrossProduct(p-v0, v1-v0);
CVector cross2 = CrossProduct(p-v1, v2-v1);
CVector cross3 = CrossProduct(p-v2, v0-v2);
// Only check relevant directions
int flagmask = 0;
if(Abs(plane.x) > 0.5f) flagmask |= 1;
if(Abs(plane.y) > 0.5f) flagmask |= 2;
if(Abs(plane.z) > 0.5f) flagmask |= 4;
int flags1 = SignFlags(cross1) & flagmask;
int flags2 = SignFlags(cross2) & flagmask;
int flags3 = SignFlags(cross3) & flagmask;
// inside if on the same side of all edges
if(flags1 != flags2 || flags1 != flags3){
vi01 = 0;
return;
}
vi01 = 1;
vf02 = plane;
return;
#endif
}
extern "C" void
LineToTriangleCollisionCompressed(const CVuVector &p0, const CVuVector &p1, VuTriangle &tri)
{
#ifdef GTA_PS2
__asm__ volatile (
".set noreorder\n"
"lqc2 vf12, 0x0(%0)\n"
"lqc2 vf13, 0x0(%1)\n"
"lqc2 vf14, 0x0(%2)\n"
"lqc2 vf15, 0x10(%2)\n"
"lqc2 vf16, 0x20(%2)\n"
"lqc2 vf17, 0x30(%2)\n"
"vcallms Vu0LineToTriangleCollisionCompressedStart\n"
".set reorder\n"
:
: "r" (&p0), "r" (&p1), "r" (&tri)
);
#else
CVuVector v0, v1, v2, plane;
v0.x = tri.v0[0]/128.0f;
v0.y = tri.v0[1]/128.0f;
v0.z = tri.v0[2]/128.0f;
v0.w = tri.v0[3]/128.0f;
v1.x = tri.v1[0]/128.0f;
v1.y = tri.v1[1]/128.0f;
v1.z = tri.v1[2]/128.0f;
v1.w = tri.v1[3]/128.0f;
v2.x = tri.v2[0]/128.0f;
v2.y = tri.v2[1]/128.0f;
v2.z = tri.v2[2]/128.0f;
v2.w = tri.v2[3]/128.0f;
plane.x = tri.plane[0]/4096.0f;
plane.y = tri.plane[1]/4096.0f;
plane.z = tri.plane[2]/4096.0f;
plane.w = tri.plane[3]/128.0f;
LineToTriangleCollision(p0, p1, v0, v1, v2, plane);
#endif
}
extern "C" void
SphereToTriangleCollision(const CVuVector &sph,
const CVuVector &v0, const CVuVector &v1, const CVuVector &v2,
const CVuVector &plane)
{
#ifdef GTA_PS2
__asm__ volatile (
".set noreorder\n"
"lqc2 vf12, 0x0(%0)\n"
"lqc2 vf14, 0x0(%1)\n"
"lqc2 vf15, 0x0(%2)\n"
"lqc2 vf16, 0x0(%3)\n"
"lqc2 vf17, 0x0(%4)\n"
"vcallms Vu0SphereToTriangleCollisionStart\n"
".set reorder\n"
:
: "r" (&sph), "r" (&v0), "r" (&v1), "r" (&v2), "r" (&plane)
);
#else
float planedist = DotProduct(plane, sph) - plane.w; // VF02
if(Abs(planedist) > sph.w){
vi01 = 0;
return;
}
// point on plane
CVuVector p = sph - planedist*plane;
p.w = 0.0f;
vf01 = p;
planedist = Abs(planedist);
// edges
CVuVector v01 = v1 - v0;
CVuVector v12 = v2 - v1;
CVuVector v20 = v0 - v2;
// VU code calculates normal again for some weird reason...
// Check sides of point
CVector cross1 = CrossProduct(p-v0, v01);
CVector cross2 = CrossProduct(p-v1, v12);
CVector cross3 = CrossProduct(p-v2, v20);
// Only check relevant directions
int flagmask = 0;
if(Abs(plane.x) > 0.1f) flagmask |= 1;
if(Abs(plane.y) > 0.1f) flagmask |= 2;
if(Abs(plane.z) > 0.1f) flagmask |= 4;
int nflags = SignFlags(plane) & flagmask;
int flags1 = SignFlags(cross1) & flagmask;
int flags2 = SignFlags(cross2) & flagmask;
int flags3 = SignFlags(cross3) & flagmask;
int testcase = 0;
CVuVector closest(0.0f, 0.0f, 0.0f); // VF04
if(flags1 == nflags){
closest += v2;
testcase++;
}
if(flags2 == nflags){
closest += v0;
testcase++;
}
if(flags3 == nflags){
closest += v1;
testcase++;
}
if(testcase == 3){
// inside triangle - dist to plane already checked
vf02 = plane;
vf02.w = vf03.x = planedist;
vi01 = 1;
}else if(testcase == 1){
// outside two sides - closest to point opposide inside edge
vf01 = closest;
vf02 = sph - closest;
float distSq = vf02.MagnitudeSqr();
vi01 = sph.w*sph.w > distSq;
vf03.x = Sqrt(distSq);
vf02 *= 1.0f/vf03.x;
}else{
// inside two sides - closest to third edge
if(flags1 != nflags)
closest = DistanceBetweenSphereAndLine(sph, v0, v01);
else if(flags2 != nflags)
closest = DistanceBetweenSphereAndLine(sph, v1, v12);
else
closest = DistanceBetweenSphereAndLine(sph, v2, v20);
vi01 = sph.w*sph.w > closest.w;
vf01 = closest;
vf02 = sph - closest;
vf03.x = Sqrt(closest.w);
vf02 *= 1.0f/vf03.x;
}
#endif
}
extern "C" void
SphereToTriangleCollisionCompressed(const CVuVector &sph, VuTriangle &tri)
{
#ifdef GTA_PS2
__asm__ volatile (
".set noreorder\n"
"lqc2 vf12, 0x0(%0)\n"
"lqc2 vf14, 0x0(%1)\n"
"lqc2 vf15, 0x10(%1)\n"
"lqc2 vf16, 0x20(%1)\n"
"lqc2 vf17, 0x30(%1)\n"
"vcallms Vu0SphereToTriangleCollisionCompressedStart\n"
".set reorder\n"
:
: "r" (&sph), "r" (&tri)
);
#else
CVuVector v0, v1, v2, plane;
v0.x = tri.v0[0]/128.0f;
v0.y = tri.v0[1]/128.0f;
v0.z = tri.v0[2]/128.0f;
v0.w = tri.v0[3]/128.0f;
v1.x = tri.v1[0]/128.0f;
v1.y = tri.v1[1]/128.0f;
v1.z = tri.v1[2]/128.0f;
v1.w = tri.v1[3]/128.0f;
v2.x = tri.v2[0]/128.0f;
v2.y = tri.v2[1]/128.0f;
v2.z = tri.v2[2]/128.0f;
v2.w = tri.v2[3]/128.0f;
plane.x = tri.plane[0]/4096.0f;
plane.y = tri.plane[1]/4096.0f;
plane.z = tri.plane[2]/4096.0f;
plane.w = tri.plane[3]/128.0f;
SphereToTriangleCollision(sph, v0, v1, v2, plane);
#endif
}
inline int
GetVUresult(void)
{
#ifdef GTA_PS2
int ret;
__asm__ volatile (
"cfc2.i %0,vi01\n" // .i important! wait for VU0 to finish
: "=r" (ret)
);
return ret;
#else
return vi01;
#endif
}
inline int
GetVUresult(CVuVector &point, CVuVector &normal, float &dist)
{
#ifdef GTA_PS2
int ret;
__asm__ volatile (
"cfc2.i %0,vi01\n" // .i important! wait for VU0 to finish
"sqc2 vf01,(%1)\n"
"sqc2 vf02,(%2)\n"
"qmfc2 $12,vf03\n"
"sw $12,(%3)\n"
: "=r" (ret)
: "r" (&point), "r" (&normal), "r" (&dist)
: "$12"
);
return ret;
#else
point = vf01;
normal = vf02;
dist = vf03.x;
return vi01;
#endif
}
#endif
enum Direction
{
DIR_X_POS,
DIR_X_NEG,
DIR_Y_POS,
DIR_Y_NEG,
DIR_Z_POS,
DIR_Z_NEG,
};
eLevelName CCollision::ms_collisionInMemory;
CLinkList<CColModel*> CCollision::ms_colModelCache;
void
CCollision::Init(void)
{
ms_colModelCache.Init(NUMCOLCACHELINKS);
ms_collisionInMemory = LEVEL_GENERIC;
CColStore::Initialise();
}
void
CCollision::Shutdown(void)
{
ms_colModelCache.Shutdown();
CColStore::Shutdown();
}
void
CCollision::Update(void)
{
}
//--MIAMI: unused
eLevelName
GetCollisionInSectorList(CPtrList &list)
{
CPtrNode *node;
CEntity *e;
int level;
for(node = list.first; node; node = node->next){
e = (CEntity*)node->item;
level = CModelInfo::GetModelInfo(e->GetModelIndex())->GetColModel()->level;
if(level != LEVEL_GENERIC)
return (eLevelName)level;
}
return LEVEL_GENERIC;
}
//--MIAMI: unused
// Get a level this sector is in based on collision models
eLevelName
GetCollisionInSector(CSector &sect)
{
int level;
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_BUILDINGS]);
if(level == LEVEL_GENERIC)
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_BUILDINGS_OVERLAP]);
if(level == LEVEL_GENERIC)
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_OBJECTS]);
if(level == LEVEL_GENERIC)
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_OBJECTS_OVERLAP]);
if(level == LEVEL_GENERIC)
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_DUMMIES]);
if(level == LEVEL_GENERIC)
level = GetCollisionInSectorList(sect.m_lists[ENTITYLIST_DUMMIES_OVERLAP]);
return (eLevelName)level;
}
void
CCollision::LoadCollisionWhenINeedIt(bool forceChange)
{
}
void
CCollision::SortOutCollisionAfterLoad(void)
{
CColStore::LoadCollision(TheCamera.GetPosition());
CStreaming::LoadAllRequestedModels(false);
}
void
CCollision::LoadCollisionScreen(eLevelName level)
{
static Const char *levelNames[4] = {
"",
"IND_ZON",
"COM_ZON",
"SUB_ZON"
};
// Why twice?
LoadingIslandScreen(levelNames[level]);
LoadingIslandScreen(levelNames[level]);
}
//
// Test
//
bool
CCollision::TestSphereSphere(const CSphere &s1, const CSphere &s2)
{
float d = s1.radius + s2.radius;
return (s1.center - s2.center).MagnitudeSqr() < d*d;
}
bool
CCollision::TestSphereBox(const CSphere &sph, const CBox &box)
{
if(sph.center.x + sph.radius < box.min.x) return false;
if(sph.center.x - sph.radius > box.max.x) return false;
if(sph.center.y + sph.radius < box.min.y) return false;
if(sph.center.y - sph.radius > box.max.y) return false;
if(sph.center.z + sph.radius < box.min.z) return false;
if(sph.center.z - sph.radius > box.max.z) return false;
return true;
}
bool
CCollision::TestLineBox(const CColLine &line, const CBox &box)
{
float t, x, y, z;
// If either line point is in the box, we have a collision
if(line.p0.x > box.min.x && line.p0.x < box.max.x &&
line.p0.y > box.min.y && line.p0.y < box.max.y &&
line.p0.z > box.min.z && line.p0.z < box.max.z)
return true;
if(line.p1.x > box.min.x && line.p1.x < box.max.x &&
line.p1.y > box.min.y && line.p1.y < box.max.y &&
line.p1.z > box.min.z && line.p1.z < box.max.z)
return true;
// check if points are on opposite sides of min x plane
if((box.min.x - line.p1.x) * (box.min.x - line.p0.x) < 0.0f){
// parameter along line where we intersect
t = (box.min.x - line.p0.x) / (line.p1.x - line.p0.x);
// y of intersection
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y){
// z of intersection
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
return true;
}
}
// same test with max x plane
if((line.p1.x - box.max.x) * (line.p0.x - box.max.x) < 0.0f){
t = (line.p0.x - box.max.x) / (line.p0.x - line.p1.x);
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
return true;
}
}
// min y plne
if((box.min.y - line.p0.y) * (box.min.y - line.p1.y) < 0.0f){
t = (box.min.y - line.p0.y) / (line.p1.y - line.p0.y);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
return true;
}
}
// max y plane
if((line.p0.y - box.max.y) * (line.p1.y - box.max.y) < 0.0f){
t = (line.p0.y - box.max.y) / (line.p0.y - line.p1.y);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
return true;
}
}
// min z plne
if((box.min.z - line.p0.z) * (box.min.z - line.p1.z) < 0.0f){
t = (box.min.z - line.p0.z) / (line.p1.z - line.p0.z);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y)
return true;
}
}
// max z plane
if((line.p0.z - box.max.z) * (line.p1.z - box.max.z) < 0.0f){
t = (line.p0.z - box.max.z) / (line.p0.z - line.p1.z);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y)
return true;
}
}
return false;
}
bool
CCollision::TestVerticalLineBox(const CColLine &line, const CBox &box)
{
if(line.p0.x <= box.min.x) return false;
if(line.p0.y <= box.min.y) return false;
if(line.p0.x >= box.max.x) return false;
if(line.p0.y >= box.max.y) return false;
if(line.p0.z < line.p1.z){
if(line.p0.z > box.max.z) return false;
if(line.p1.z < box.min.z) return false;
}else{
if(line.p1.z > box.max.z) return false;
if(line.p0.z < box.min.z) return false;
}
return true;
}
bool
CCollision::TestLineTriangle(const CColLine &line, const CompressedVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane)
{
#ifdef VU_COLLISION
// not used in favour of optimized loops
VuTriangle vutri;
verts[tri.a].Unpack(vutri.v0);
verts[tri.b].Unpack(vutri.v1);
verts[tri.c].Unpack(vutri.v2);
plane.Unpack(vutri.plane);
LineToTriangleCollisionCompressed(*(CVuVector*)&line.p0, *(CVuVector*)&line.p1, vutri);
if(GetVUresult())
return true;
return false;
#else
float t;
CVector normal;
plane.GetNormal(normal);
// if points are on the same side, no collision
if(plane.CalcPoint(line.p0) * plane.CalcPoint(line.p1) > 0.0f)
return false;
// intersection parameter on line
t = -plane.CalcPoint(line.p0) / DotProduct(line.p1 - line.p0, normal);
// find point of intersection
CVector p = line.p0 + (line.p1-line.p0)*t;
const CVector &va = verts[tri.a].Get();
const CVector &vb = verts[tri.b].Get();
const CVector &vc = verts[tri.c].Get();
CVector2D vec1, vec2, vec3, vect;
// We do the test in 2D. With the plane direction we
// can figure out how to project the vectors.
// normal = (c-a) x (b-a)
switch(plane.dir){
case DIR_X_POS:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vc.y; vec2.y = vc.z;
vec3.x = vb.y; vec3.y = vb.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_X_NEG:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vb.y; vec2.y = vb.z;
vec3.x = vc.y; vec3.y = vc.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_Y_POS:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vc.z; vec2.y = vc.x;
vec3.x = vb.z; vec3.y = vb.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Y_NEG:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vb.z; vec2.y = vb.x;
vec3.x = vc.z; vec3.y = vc.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Z_POS:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vc.x; vec2.y = vc.y;
vec3.x = vb.x; vec3.y = vb.y;
vect.x = p.x; vect.y = p.y;
break;
case DIR_Z_NEG:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vb.x; vec2.y = vb.y;
vec3.x = vc.x; vec3.y = vc.y;
vect.x = p.x; vect.y = p.y;
break;
default:
assert(0);
}
// This is our triangle:
// 3-------2
// \ P /
// \ /
// \ /
// 1
// We can use the "2d cross product" to check on which side
// a vector is of another. Test is true if point is inside of all edges.
if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false;
if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false;
if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false;
return true;
#endif
}
// Test if line segment intersects with sphere.
// If the first point is inside the sphere this test does not register a collision!
// The code is reversed from the original code and rather ugly, see Process for a clear version.
// TODO: actually rewrite this mess
bool
CCollision::TestLineSphere(const CColLine &line, const CColSphere &sph)
{
CVector v01 = line.p1 - line.p0; // vector from p0 to p1
CVector v0c = sph.center - line.p0; // vector from p0 to center
float linesq = v01.MagnitudeSqr();
// I leave in the strange -2 factors even though they serve no real purpose
float projline = -2.0f * DotProduct(v01, v0c); // project v0c onto line
// Square of tangent from p0 multiplied by line length so we can compare with projline.
// The length of the tangent would be this: Sqrt((c-p0)^2 - r^2).
// Negative if p0 is inside the sphere! This breaks the test!
float tansq = 4.0f * linesq *
(sph.center.MagnitudeSqr() - 2.0f*DotProduct(sph.center, line.p0) + line.p0.MagnitudeSqr() - sph.radius*sph.radius);
float diffsq = projline*projline - tansq;
// if diffsq < 0 that means the line is a passant, so no intersection
if(diffsq < 0.0f)
return false;
// projline (negative in GTA for some reason) is the point on the line
// in the middle of the two intersection points (startin from p0).
// Sqrt(diffsq) somehow works out to be the distance from that
// midpoint to the intersection points.
// So subtract that and get rid of the awkward scaling:
float f = (-projline - Sqrt(diffsq)) / (2.0f*linesq);
// f should now be in range [0, 1] for [p0, p1]
return f >= 0.0f && f <= 1.0f;
}
bool
CCollision::TestSphereTriangle(const CColSphere &sphere,
const CompressedVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane)
{
#ifdef VU_COLLISION
// not used in favour of optimized loops
VuTriangle vutri;
verts[tri.a].Unpack(vutri.v0);
verts[tri.b].Unpack(vutri.v1);
verts[tri.c].Unpack(vutri.v2);
plane.Unpack(vutri.plane);
SphereToTriangleCollisionCompressed(*(CVuVector*)&sphere, vutri);
if(GetVUresult())
return true;
return false;
#else
// If sphere and plane don't intersect, no collision
float planedist = plane.CalcPoint(sphere.center);
if(Abs(planedist) > sphere.radius)
return false;
const CVector &va = verts[tri.a].Get();
const CVector &vb = verts[tri.b].Get();
const CVector &vc = verts[tri.c].Get();
// calculate two orthogonal basis vectors for the triangle
CVector vec2 = vb - va;
float len = vec2.Magnitude();
vec2 = vec2 * (1.0f/len);
CVector normal;
plane.GetNormal(normal);
CVector vec1 = CrossProduct(vec2, normal);
// We know A has local coordinate [0,0] and B has [0,len].
// Now calculate coordinates on triangle for these two vectors:
CVector vac = vc - va;
CVector vas = sphere.center - va;
CVector2D b(0.0f, len);
CVector2D c(DotProduct(vec1, vac), DotProduct(vec2, vac));
CVector2D s(DotProduct(vec1, vas), DotProduct(vec2, vas));
// The three triangle lines partition the space into 6 sectors,
// find out in which the center lies.
int insideAB = CrossProduct2D(s, b) >= 0.0f;
int insideAC = CrossProduct2D(c, s) >= 0.0f;
int insideBC = CrossProduct2D(s-b, c-b) >= 0.0f;
int testcase = insideAB + insideAC + insideBC;
float dist = 0.0f;
switch(testcase){
case 0:
return false; // shouldn't happen
case 1:
// closest to a vertex
if(insideAB) dist = (sphere.center - vc).Magnitude();
else if(insideAC) dist = (sphere.center - vb).Magnitude();
else if(insideBC) dist = (sphere.center - va).Magnitude();
else assert(0);
break;
case 2:
// closest to an edge
// looks like original game as DistToLine manually inlined
if(!insideAB) dist = DistToLine(&va, &vb, &sphere.center);
else if(!insideAC) dist = DistToLine(&va, &vc, &sphere.center);
else if(!insideBC) dist = DistToLine(&vb, &vc, &sphere.center);
else assert(0);
break;
case 3:
// center is in triangle
dist = Abs(planedist);
break;
default:
assert(0);
}
return dist < sphere.radius;
#endif
}
bool
CCollision::TestLineOfSight(const CColLine &line, const CMatrix &matrix, CColModel &model, bool ignoreSeeThrough, bool ignoreShootThrough)
{
#ifdef VU_COLLISION
CMatrix matTransform;
int i;
// transform line to model space
Invert(matrix, matTransform);
CVuVector newline[2];
TransformPoints(newline, 2, matTransform, (RwV3d*)&line.p0, sizeof(CColLine)/2);
// If we don't intersect with the bounding box, no chance on the rest
if(!TestLineBox(*(CColLine*)newline, model.boundingBox))
return false;
for(i = 0; i < model.numSpheres; i++){
if(ignoreSeeThrough && IsSeeThrough(model.spheres[i].surface)) continue;
if(TestLineSphere(*(CColLine*)newline, model.spheres[i]))
return true;
}
for(i = 0; i < model.numBoxes; i++){
if(ignoreSeeThrough && IsSeeThrough(model.boxes[i].surface)) continue;
if(TestLineBox(*(CColLine*)newline, model.boxes[i]))
return true;
}
CalculateTrianglePlanes(&model);
int lastTest = -1;
VuTriangle vutri;
for(i = 0; i < model.numTriangles; i++){
if(ignoreSeeThrough && IsSeeThrough(model.triangles[i].surface)) continue;
CColTriangle *tri = &model.triangles[i];
model.vertices[tri->a].Unpack(vutri.v0);
model.vertices[tri->b].Unpack(vutri.v1);
model.vertices[tri->c].Unpack(vutri.v2);
model.trianglePlanes[i].Unpack(vutri.plane);
LineToTriangleCollisionCompressed(newline[0], newline[1], vutri);
lastTest = i;
break;
}
#ifdef FIX_BUGS
// no need to check first again
i++;
#endif
for(; i < model.numTriangles; i++){
if(ignoreSeeThrough && IsSeeThrough(model.triangles[i].surface)) continue;
CColTriangle *tri = &model.triangles[i];
model.vertices[tri->a].Unpack(vutri.v0);
model.vertices[tri->b].Unpack(vutri.v1);
model.vertices[tri->c].Unpack(vutri.v2);
model.trianglePlanes[i].Unpack(vutri.plane);
if(GetVUresult())
return true;
LineToTriangleCollisionCompressed(newline[0], newline[1], vutri);
lastTest = i;
}
if(lastTest != -1 && GetVUresult())
return true;
return false;
#else
static CMatrix matTransform;
int i;
// transform line to model space
Invert(matrix, matTransform);
CColLine newline(matTransform * line.p0, matTransform * line.p1);
// If we don't intersect with the bounding box, no chance on the rest
if(!TestLineBox(newline, model.boundingBox))
return false;
for(i = 0; i < model.numSpheres; i++){
if(ignoreSeeThrough && IsSeeThrough(model.spheres[i].surface)) continue;
if(ignoreShootThrough && IsShootThrough(model.spheres[i].surface)) continue;
if(TestLineSphere(newline, model.spheres[i]))
return true;
}
for(i = 0; i < model.numBoxes; i++){
if(ignoreSeeThrough && IsSeeThrough(model.boxes[i].surface)) continue;
if(ignoreShootThrough && IsShootThrough(model.boxes[i].surface)) continue;
if(TestLineBox(newline, model.boxes[i]))
return true;
}
CalculateTrianglePlanes(&model);
for(i = 0; i < model.numTriangles; i++){
if(ignoreSeeThrough && IsSeeThrough(model.triangles[i].surface)) continue;
if(ignoreShootThrough && IsShootThrough(model.triangles[i].surface)) continue;
if(TestLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i]))
return true;
}
return false;
#endif
}
// TODO: TestPillWithSpheresInColModel, but only called from overloaded CWeapon::FireMelee which isn't used
//
// Process
//
// For Spheres mindist is the squared distance to its center
// For Lines mindist is between [0,1]
bool
CCollision::ProcessSphereSphere(const CColSphere &s1, const CColSphere &s2, CColPoint &point, float &mindistsq)
{
CVector dist = s1.center - s2.center;
float d = dist.Magnitude() - s2.radius; // distance from s1's center to s2
float depth = s1.radius - d; // sphere overlap
if(d < 0.0f) d = 0.0f; // clamp to zero, i.e. if s1's center is inside s2
// no collision if sphere is not close enough
if(d*d < mindistsq && d < s1.radius){
dist.Normalise();
point.point = s1.center - dist*d;
point.normal = dist;
#ifndef VU_COLLISION
point.surfaceA = s1.surface;
point.pieceA = s1.piece;
point.surfaceB = s2.surface;
point.pieceB = s2.piece;
#endif
point.depth = depth;
mindistsq = d*d; // collision radius
return true;
}
return false;
}
bool
CCollision::ProcessSphereBox(const CColSphere &sph, const CColBox &box, CColPoint &point, float &mindistsq)
{
CVector p;
CVector dist;
// GTA's code is too complicated, uses a huge 3x3x3 if statement
// we can simplify the structure a lot
// first make sure we have a collision at all
if(sph.center.x + sph.radius < box.min.x) return false;
if(sph.center.x - sph.radius > box.max.x) return false;
if(sph.center.y + sph.radius < box.min.y) return false;
if(sph.center.y - sph.radius > box.max.y) return false;
if(sph.center.z + sph.radius < box.min.z) return false;
if(sph.center.z - sph.radius > box.max.z) return false;
// Now find out where the sphere center lies in relation to all the sides
int xpos = sph.center.x < box.min.x ? 1 :
sph.center.x > box.max.x ? 2 :
0;
int ypos = sph.center.y < box.min.y ? 1 :
sph.center.y > box.max.y ? 2 :
0;
int zpos = sph.center.z < box.min.z ? 1 :
sph.center.z > box.max.z ? 2 :
0;
if(xpos == 0 && ypos == 0 && zpos == 0){
// sphere is inside the box
p = (box.min + box.max)*0.5f;
dist = sph.center - p;
float lensq = dist.MagnitudeSqr();
if(lensq < mindistsq){
point.normal = dist * (1.0f/Sqrt(lensq));
point.point = sph.center - point.normal;
#ifndef VU_COLLISION
point.surfaceA = sph.surface;
point.pieceA = sph.piece;
point.surfaceB = box.surface;
point.pieceB = box.piece;
#endif
// find absolute distance to the closer side in each dimension
float dx = dist.x > 0.0f ?
box.max.x - sph.center.x :
sph.center.x - box.min.x;
float dy = dist.y > 0.0f ?
box.max.y - sph.center.y :
sph.center.y - box.min.y;
float dz = dist.z > 0.0f ?
box.max.z - sph.center.z :
sph.center.z - box.min.z;
// collision depth is maximum of that:
if(dx > dy && dx > dz)
point.depth = dx;
else if(dy > dz)
point.depth = dy;
else
point.depth = dz;
return true;
}
}else{
// sphere is outside.
// closest point on box:
p.x = xpos == 1 ? box.min.x :
xpos == 2 ? box.max.x :
sph.center.x;
p.y = ypos == 1 ? box.min.y :
ypos == 2 ? box.max.y :
sph.center.y;
p.z = zpos == 1 ? box.min.z :
zpos == 2 ? box.max.z :
sph.center.z;
dist = sph.center - p;
float lensq = dist.MagnitudeSqr();
if(lensq < mindistsq){
float len = Sqrt(lensq);
point.point = p;
point.normal = dist * (1.0f/len);
#ifndef VU_COLLISION
point.surfaceA = sph.surface;
point.pieceA = sph.piece;
point.surfaceB = box.surface;
point.pieceB = box.piece;
#endif
point.depth = sph.radius - len;
mindistsq = lensq;
return true;
}
}
return false;
}
bool
CCollision::ProcessLineBox(const CColLine &line, const CColBox &box, CColPoint &point, float &mindist)
{
float mint, t, x, y, z;
CVector normal;
CVector p;
mint = 1.0f;
// check if points are on opposite sides of min x plane
if((box.min.x - line.p1.x) * (box.min.x - line.p0.x) < 0.0f){
// parameter along line where we intersect
t = (box.min.x - line.p0.x) / (line.p1.x - line.p0.x);
// y of intersection
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y){
// z of intersection
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
if(t < mint){
mint = t;
p = CVector(box.min.x, y, z);
normal = CVector(-1.0f, 0.0f, 0.0f);
}
}
}
// max x plane
if((line.p1.x - box.max.x) * (line.p0.x - box.max.x) < 0.0f){
t = (line.p0.x - box.max.x) / (line.p0.x - line.p1.x);
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
if(t < mint){
mint = t;
p = CVector(box.max.x, y, z);
normal = CVector(1.0f, 0.0f, 0.0f);
}
}
}
// min y plne
if((box.min.y - line.p0.y) * (box.min.y - line.p1.y) < 0.0f){
t = (box.min.y - line.p0.y) / (line.p1.y - line.p0.y);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
if(t < mint){
mint = t;
p = CVector(x, box.min.y, z);
normal = CVector(0.0f, -1.0f, 0.0f);
}
}
}
// max y plane
if((line.p0.y - box.max.y) * (line.p1.y - box.max.y) < 0.0f){
t = (line.p0.y - box.max.y) / (line.p0.y - line.p1.y);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
z = line.p0.z + (line.p1.z - line.p0.z)*t;
if(z > box.min.z && z < box.max.z)
if(t < mint){
mint = t;
p = CVector(x, box.max.y, z);
normal = CVector(0.0f, 1.0f, 0.0f);
}
}
}
// min z plne
if((box.min.z - line.p0.z) * (box.min.z - line.p1.z) < 0.0f){
t = (box.min.z - line.p0.z) / (line.p1.z - line.p0.z);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y)
if(t < mint){
mint = t;
p = CVector(x, y, box.min.z);
normal = CVector(0.0f, 0.0f, -1.0f);
}
}
}
// max z plane
if((line.p0.z - box.max.z) * (line.p1.z - box.max.z) < 0.0f){
t = (line.p0.z - box.max.z) / (line.p0.z - line.p1.z);
x = line.p0.x + (line.p1.x - line.p0.x)*t;
if(x > box.min.x && x < box.max.x){
y = line.p0.y + (line.p1.y - line.p0.y)*t;
if(y > box.min.y && y < box.max.y)
if(t < mint){
mint = t;
p = CVector(x, y, box.max.z);
normal = CVector(0.0f, 0.0f, 1.0f);
}
}
}
if(mint >= mindist)
return false;
point.point = p;
point.normal = normal;
#ifndef VU_COLLISION
point.surfaceA = 0;
point.pieceA = 0;
point.surfaceB = box.surface;
point.pieceB = box.piece;
#endif
mindist = mint;
return true;
}
// If line.p0 lies inside sphere, no collision is registered.
bool
CCollision::ProcessLineSphere(const CColLine &line, const CColSphere &sphere, CColPoint &point, float &mindist)
{
CVector v01 = line.p1 - line.p0;
CVector v0c = sphere.center - line.p0;
float linesq = v01.MagnitudeSqr();
// project v0c onto v01, scaled by |v01| this is the midpoint of the two intersections
float projline = DotProduct(v01, v0c);
// tangent of p0 to sphere, scaled by linesq just like projline^2
float tansq = (v0c.MagnitudeSqr() - sphere.radius*sphere.radius) * linesq;
// this works out to be the square of the distance between the midpoint and the intersections
float diffsq = projline*projline - tansq;
// no intersection
if(diffsq < 0.0f)
return false;
// point of first intersection, in range [0,1] between p0 and p1
float t = (projline - Sqrt(diffsq)) / linesq;
// if not on line or beyond mindist, no intersection
if(t < 0.0f || t > 1.0f || t >= mindist)
return false;
point.point = line.p0 + v01*t;
point.normal = point.point - sphere.center;
point.normal.Normalise();
#ifndef VU_COLLISION
point.surfaceA = 0;
point.pieceA = 0;
point.surfaceB = sphere.surface;
point.pieceB = sphere.piece;
#endif
mindist = t;
return true;
}
//--MIAMI: unused
bool
CCollision::ProcessVerticalLineTriangle(const CColLine &line,
const CompressedVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane,
CColPoint &point, float &mindist, CStoredCollPoly *poly)
{
#ifdef VU_COLLISION
// not used in favour of optimized loops
bool res = ProcessLineTriangle(line, verts, tri, plane, point, mindist);
if(res && poly){
poly->verts[0] = verts[tri.a].Get();
poly->verts[1] = verts[tri.b].Get();
poly->verts[2] = verts[tri.c].Get();
poly->valid = true;
}
return res;
#else
float t;
CVector normal;
const CVector &p0 = line.p0;
const CVector &va = verts[tri.a].Get();
const CVector &vb = verts[tri.b].Get();
const CVector &vc = verts[tri.c].Get();
// early out bound rect test
if(p0.x < va.x && p0.x < vb.x && p0.x < vc.x) return false;
if(p0.x > va.x && p0.x > vb.x && p0.x > vc.x) return false;
if(p0.y < va.y && p0.y < vb.y && p0.y < vc.y) return false;
if(p0.y > va.y && p0.y > vb.y && p0.y > vc.y) return false;
plane.GetNormal(normal);
// if points are on the same side, no collision
if(plane.CalcPoint(p0) * plane.CalcPoint(line.p1) > 0.0f)
return false;
// intersection parameter on line
float h = (line.p1 - p0).z;
t = -plane.CalcPoint(p0) / (h * normal.z);
// early out if we're beyond the mindist
if(t >= mindist)
return false;
CVector p(p0.x, p0.y, p0.z + h*t);
CVector2D vec1, vec2, vec3, vect;
switch(plane.dir){
case DIR_X_POS:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vc.y; vec2.y = vc.z;
vec3.x = vb.y; vec3.y = vb.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_X_NEG:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vb.y; vec2.y = vb.z;
vec3.x = vc.y; vec3.y = vc.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_Y_POS:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vc.z; vec2.y = vc.x;
vec3.x = vb.z; vec3.y = vb.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Y_NEG:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vb.z; vec2.y = vb.x;
vec3.x = vc.z; vec3.y = vc.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Z_POS:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vc.x; vec2.y = vc.y;
vec3.x = vb.x; vec3.y = vb.y;
vect.x = p.x; vect.y = p.y;
break;
case DIR_Z_NEG:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vb.x; vec2.y = vb.y;
vec3.x = vc.x; vec3.y = vc.y;
vect.x = p.x; vect.y = p.y;
break;
default:
assert(0);
}
if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false;
if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false;
if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false;
if(t >= mindist) return false;
point.point = p;
point.normal = normal;
point.surfaceA = 0;
point.pieceA = 0;
point.surfaceB = tri.surface;
point.pieceB = 0;
if(poly){
poly->verts[0] = va;
poly->verts[1] = vb;
poly->verts[2] = vc;
poly->valid = true;
}
mindist = t;
return true;
#endif
}
bool
CCollision::IsStoredPolyStillValidVerticalLine(const CVector &pos, float z, CColPoint &point, CStoredCollPoly *poly)
{
#ifdef VU_COLLISION
if(!poly->valid)
return false;
CVuVector p0 = pos;
CVuVector p1 = pos;
p1.z = z;
CVector v01 = poly->verts[1] - poly->verts[0];
CVector v02 = poly->verts[2] - poly->verts[0];
CVuVector plane = CrossProduct(v02, v01);
plane.Normalise();
plane.w = DotProduct(plane, poly->verts[0]);
LineToTriangleCollision(p0, p1, poly->verts[0], poly->verts[1], poly->verts[2], plane);
CVuVector pnt;
float dist;
if(!GetVUresult(pnt, plane, dist))
#ifdef FIX_BUGS
// perhaps not needed but be safe
return poly->valid = false;
#else
return false;
#endif
point.point = pnt;
return true;
#else
float t;
if(!poly->valid)
return false;
// maybe inlined?
CColTrianglePlane plane;
plane.Set(poly->verts[0], poly->verts[1], poly->verts[2]);
const CVector &va = poly->verts[0];
const CVector &vb = poly->verts[1];
const CVector &vc = poly->verts[2];
CVector p0 = pos;
CVector p1(pos.x, pos.y, z);
// The rest is pretty much CCollision::ProcessLineTriangle
// if points are on the same side, no collision
if(plane.CalcPoint(p0) * plane.CalcPoint(p1) > 0.0f)
return poly->valid = false;
// intersection parameter on line
CVector normal;
plane.GetNormal(normal);
t = -plane.CalcPoint(p0) / DotProduct(p1 - p0, normal);
// find point of intersection
CVector p = p0 + (p1-p0)*t;
CVector2D vec1, vec2, vec3, vect;
switch(plane.dir){
case DIR_X_POS:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vc.y; vec2.y = vc.z;
vec3.x = vb.y; vec3.y = vb.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_X_NEG:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vb.y; vec2.y = vb.z;
vec3.x = vc.y; vec3.y = vc.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_Y_POS:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vc.z; vec2.y = vc.x;
vec3.x = vb.z; vec3.y = vb.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Y_NEG:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vb.z; vec2.y = vb.x;
vec3.x = vc.z; vec3.y = vc.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Z_POS:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vc.x; vec2.y = vc.y;
vec3.x = vb.x; vec3.y = vb.y;
vect.x = p.x; vect.y = p.y;
break;
case DIR_Z_NEG:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vb.x; vec2.y = vb.y;
vec3.x = vc.x; vec3.y = vc.y;
vect.x = p.x; vect.y = p.y;
break;
default:
assert(0);
}
if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return poly->valid = false;
if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return poly->valid = false;
if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return poly->valid = false;
point.point = p;
return poly->valid = true;
#endif
}
bool
CCollision::ProcessLineTriangle(const CColLine &line,
const CompressedVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane,
CColPoint &point, float &mindist, CStoredCollPoly *poly)
{
#ifdef VU_COLLISION
// not used in favour of optimized loops
VuTriangle vutri;
verts[tri.a].Unpack(vutri.v0);
verts[tri.b].Unpack(vutri.v1);
verts[tri.c].Unpack(vutri.v2);
plane.Unpack(vutri.plane);
LineToTriangleCollisionCompressed(*(CVuVector*)&line.p0, *(CVuVector*)&line.p1, vutri);
CVuVector pnt, normal;
float dist;
if(GetVUresult(pnt, normal, dist)){
if(dist < mindist){
point.point = pnt;
point.normal = normal;
mindist = dist;
return true;
}
}
return false;
#else
float t;
CVector normal;
plane.GetNormal(normal);
// if points are on the same side, no collision
if(plane.CalcPoint(line.p0) * plane.CalcPoint(line.p1) > 0.0f)
return false;
// intersection parameter on line
t = -plane.CalcPoint(line.p0) / DotProduct(line.p1 - line.p0, normal);
// early out if we're beyond the mindist
if(t >= mindist)
return false;
// find point of intersection
CVector p = line.p0 + (line.p1-line.p0)*t;
const CVector &va = verts[tri.a].Get();
const CVector &vb = verts[tri.b].Get();
const CVector &vc = verts[tri.c].Get();
CVector2D vec1, vec2, vec3, vect;
switch(plane.dir){
case DIR_X_POS:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vc.y; vec2.y = vc.z;
vec3.x = vb.y; vec3.y = vb.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_X_NEG:
vec1.x = va.y; vec1.y = va.z;
vec2.x = vb.y; vec2.y = vb.z;
vec3.x = vc.y; vec3.y = vc.z;
vect.x = p.y; vect.y = p.z;
break;
case DIR_Y_POS:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vc.z; vec2.y = vc.x;
vec3.x = vb.z; vec3.y = vb.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Y_NEG:
vec1.x = va.z; vec1.y = va.x;
vec2.x = vb.z; vec2.y = vb.x;
vec3.x = vc.z; vec3.y = vc.x;
vect.x = p.z; vect.y = p.x;
break;
case DIR_Z_POS:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vc.x; vec2.y = vc.y;
vec3.x = vb.x; vec3.y = vb.y;
vect.x = p.x; vect.y = p.y;
break;
case DIR_Z_NEG:
vec1.x = va.x; vec1.y = va.y;
vec2.x = vb.x; vec2.y = vb.y;
vec3.x = vc.x; vec3.y = vc.y;
vect.x = p.x; vect.y = p.y;
break;
default:
assert(0);
}
if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false;
if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false;
if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false;
if(t >= mindist) return false;
point.point = p;
point.normal = normal;
point.surfaceA = 0;
point.pieceA = 0;
point.surfaceB = tri.surface;
point.pieceB = 0;
if(poly){
poly->verts[0] = va;
poly->verts[1] = vb;
poly->verts[2] = vc;
poly->valid = true;
}
mindist = t;
return true;
#endif
}
bool
CCollision::ProcessSphereTriangle(const CColSphere &sphere,
const CompressedVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane,
CColPoint &point, float &mindistsq)
{
#ifdef VU_COLLISION
// not used in favour of optimized loops
VuTriangle vutri;
verts[tri.a].Unpack(vutri.v0);
verts[tri.b].Unpack(vutri.v1);
verts[tri.c].Unpack(vutri.v2);
plane.Unpack(vutri.plane);
SphereToTriangleCollisionCompressed(*(CVuVector*)&sphere, vutri);
CVuVector pnt, normal;
float dist;
if(GetVUresult(pnt, normal, dist) && dist*dist < mindistsq){
float depth = sphere.radius - dist;
if(depth > point.depth){
point.point = pnt;
point.normal = normal;
point.depth = depth;
mindistsq = dist*dist;
return true;
}
}
return false;
#else
// If sphere and plane don't intersect, no collision
float planedist = plane.CalcPoint(sphere.center);
float distsq = planedist*planedist;
if(Abs(planedist) > sphere.radius || distsq > mindistsq)
return false;
const CVector &va = verts[tri.a].Get();
const CVector &vb = verts[tri.b].Get();
const CVector &vc = verts[tri.c].Get();
// calculate two orthogonal basis vectors for the triangle
CVector normal;
plane.GetNormal(normal);
CVector vec2 = vb - va;
float len = vec2.Magnitude();
vec2 = vec2 * (1.0f/len);
CVector vec1 = CrossProduct(vec2, normal);
// We know A has local coordinate [0,0] and B has [0,len].
// Now calculate coordinates on triangle for these two vectors:
CVector vac = vc - va;
CVector vas = sphere.center - va;
CVector2D b(0.0f, len);
CVector2D c(DotProduct(vec1, vac), DotProduct(vec2, vac));
CVector2D s(DotProduct(vec1, vas), DotProduct(vec2, vas));
// The three triangle lines partition the space into 6 sectors,
// find out in which the center lies.
int insideAB = CrossProduct2D(s, b) >= 0.0f;
int insideAC = CrossProduct2D(c, s) >= 0.0f;
int insideBC = CrossProduct2D(s-b, c-b) >= 0.0f;
int testcase = insideAB + insideAC + insideBC;
float dist = 0.0f;
CVector p;
switch(testcase){
case 0:
return false; // shouldn't happen
case 1:
// closest to a vertex
if(insideAB) p = vc;
else if(insideAC) p = vb;
else if(insideBC) p = va;
else assert(0);
dist = (sphere.center - p).Magnitude();
break;
case 2:
// closest to an edge
// looks like original game as DistToLine manually inlined
if(!insideAB) dist = DistToLine(&va, &vb, &sphere.center, p);
else if(!insideAC) dist = DistToLine(&va, &vc, &sphere.center, p);
else if(!insideBC) dist = DistToLine(&vb, &vc, &sphere.center, p);
else assert(0);
break;
case 3:
// center is in triangle
dist = Abs(planedist);
p = sphere.center - normal*planedist;
break;
default:
assert(0);
}
if(dist >= sphere.radius || dist*dist >= mindistsq)
return false;
point.point = p;
point.normal = sphere.center - p;
point.normal.Normalise();
#ifndef VU_COLLISION
point.surfaceA = sphere.surface;
point.pieceA = sphere.piece;
point.surfaceB = tri.surface;
point.pieceB = 0;
#endif
point.depth = sphere.radius - dist;
mindistsq = dist*dist;
return true;
#endif
}
bool
CCollision::ProcessLineOfSight(const CColLine &line,
const CMatrix &matrix, CColModel &model,
CColPoint &point, float &mindist, bool ignoreSeeThrough, bool ignoreShootThrough)
{
#ifdef VU_COLLISION
CMatrix matTransform;
int i;
// transform line to model space
Invert(matrix, matTransform);
CVuVector newline[2];
TransformPoints(newline, 2, matTransform, (RwV3d*)&line.p0, sizeof(CColLine)/2);
if(mindist < 1.0f)
newline[1] = newline[0] + (newline[1] - newline[0])*mindist;
// If we don't intersect with the bounding box, no chance on the rest
if(!TestLineBox(*(CColLine*)newline, model.boundingBox))
return false;
float coldist = 1.0f;
for(i = 0; i < model.numSpheres; i++){
if(ignoreSeeThrough && IsSeeThrough(model.spheres[i].surface)) continue;
if(ProcessLineSphere(*(CColLine*)newline, model.spheres[i], point, coldist))
point.Set(0, 0, model.spheres[i].surface, model.spheres[i].piece);
}
for(i = 0; i < model.numBoxes; i++){
if(ignoreSeeThrough && IsSeeThrough(model.boxes[i].surface)) continue;
if(ProcessLineBox(*(CColLine*)newline, model.boxes[i], point, coldist))
point.Set(0, 0, model.boxes[i].surface, model.boxes[i].piece);
}
CalculateTrianglePlanes(&model);
VuTriangle vutri;
CColTriangle *lasttri = nil;
for(i = 0; i < model.numTriangles; i++){
if(ignoreSeeThrough && IsSeeThrough(model.triangles[i].surface)) continue;
CColTriangle *tri = &model.triangles[i];
model.vertices[tri->a].Unpack(vutri.v0);
model.vertices[tri->b].Unpack(vutri.v1);
model.vertices[tri->c].Unpack(vutri.v2);
model.trianglePlanes[i].Unpack(vutri.plane);
LineToTriangleCollisionCompressed(newline[0], newline[1], vutri);
lasttri = tri;
break;
}
#ifdef FIX_BUGS
// no need to check first again
i++;
#endif
CVuVector pnt, normal;
float dist;
for(; i < model.numTriangles; i++){
if(ignoreSeeThrough && IsSeeThrough(model.triangles[i].surface)) continue;
CColTriangle *tri = &model.triangles[i];
model.vertices[tri->a].Unpack(vutri.v0);
model.vertices[tri->b].Unpack(vutri.v1);
model.vertices[tri->c].Unpack(vutri.v2);
model.trianglePlanes[i].Unpack(vutri.plane);
if(GetVUresult(pnt, normal, dist))
if(dist < coldist){
point.point = pnt;
point.normal = normal;
point.Set(0, 0, lasttri->surface, 0);
coldist = dist;
}
LineToTriangleCollisionCompressed(newline[0], newline[1], vutri);
lasttri = tri;
}
if(lasttri && GetVUresult(pnt, normal, dist))
if(dist < coldist){
point.point = pnt;
point.normal = normal;
point.Set(0, 0, lasttri->surface, 0);
coldist = dist;
}
if(coldist < 1.0f){
point.point = matrix * point.point;
point.normal = Multiply3x3(matrix, point.normal);
mindist *= coldist;
return true;
}
return false;
#else
static CMatrix matTransform;
int i;
// transform line to model space
Invert(matrix, matTransform);
CColLine newline(matTransform * line.p0, matTransform * line.p1);
// If we don't intersect with the bounding box, no chance on the rest
if(!TestLineBox(newline, model.boundingBox))
return false;
float coldist = mindist;
for(i = 0; i < model.numSpheres; i++){
if(ignoreSeeThrough && IsSeeThrough(model.spheres[i].surface)) continue;
if(ignoreShootThrough && IsShootThrough(model.spheres[i].surface)) continue;
ProcessLineSphere(newline, model.spheres[i], point, coldist);
}
for(i = 0; i < model.numBoxes; i++){
if(ignoreSeeThrough && IsSeeThrough(model.boxes[i].surface)) continue;
if(ignoreShootThrough && IsShootThrough(model.boxes[i].surface)) continue;
ProcessLineBox(newline, model.boxes[i], point, coldist);
}
CalculateTrianglePlanes(&model);
for(i = 0; i < model.numTriangles; i++){
if(ignoreSeeThrough && IsSeeThrough(model.triangles[i].surface)) continue;
if(ignoreShootThrough && IsShootThrough(model.triangles[i].surface)) continue;
ProcessLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i], point, coldist);
}
if(coldist < mindist){
point.point = matrix * point.point;
point.normal = Multiply3x3(matrix, point.normal);
mindist = coldist;
return true;
}
return false;
#endif
}
bool
CCollision::ProcessVerticalLine(const CColLine &line,
const CMatrix &matrix, CColModel &model,
CColPoint &point, float &mindist, bool ignoreSeeThrough, bool ignoreShootThrough, CStoredCollPoly *poly)
{
#ifdef VU_COLLISION
static CStoredCollPoly TempStoredPoly;
CMatrix matTransform;
int i;
// transform line to model space
Invert(matrix, matTransform);
CVuVector newline[2];
TransformPoints(newline, 2, matTransform, (RwV3d*)&line.p0, sizeof(CColLine)/2);
if(mindist < 1.0f)
newline[1] = newline[0] + (newline[1] - newline[0])*mindist;
if(!TestLineBox(*(CColLine*)newline, model.boundingBox))
return false;
float coldist = 1.0f;
for(i = 0; i < model.numSpheres; i++){
if(ignoreSeeThrough && IsSeeThrough(model.spheres[i].surface)) continue;
if(ProcessLineSphere(*(CColLine*)newline, model.spheres[i], point, coldist))
point.Set(0, 0, model.spheres[i].surface, model.spheres[i].piece);
}
for(i = 0; i < model.numBoxes; i++){
if(ignoreSeeThrough && IsSeeThrough(model.boxes[i].surface)) continue;
if(ProcessLineBox(*(CColLine*)newline, model.boxes[i], point, coldist))
point.Set(0, 0, model.boxes[i].surface, model.boxes[i].piece);
}
CalculateTrianglePlanes(&model);
TempStoredPoly.valid = false;
if(model.numTriangles){
bool registeredCol;
CColTriangle *lasttri = nil;
VuTriangle vutri;
for(i = 0; i < model.numTriangles; i++){
if(ignoreSeeThrough && IsSeeThrough(model.triangles[i].surface)) continue;
CColTriangle *tri = &model.triangles[i];
model.vertices[tri->a].Unpack(vutri.v0);
model.vertices[tri->b].Unpack(vutri.v1);
model.vertices[tri->c].Unpack(vutri.v2);
model.trianglePlanes[i].Unpack(vutri.plane);
LineToTriangleCollisionCompressed(newline[0], newline[1], vutri);
lasttri = tri;
break;
}
#ifdef FIX_BUGS
// no need to check first again
i++;
#endif
CVuVector pnt, normal;
float dist;
for(; i < model.numTriangles; i++){
if(ignoreSeeThrough && IsSeeThrough(model.triangles[i].surface)) continue;
CColTriangle *tri = &model.triangles[i];
model.vertices[tri->a].Unpack(vutri.v0);
model.vertices[tri->b].Unpack(vutri.v1);
model.vertices[tri->c].Unpack(vutri.v2);
model.trianglePlanes[i].Unpack(vutri.plane);
if(GetVUresult(pnt, normal, dist)){
if(dist < coldist){
point.point = pnt;
point.normal = normal;
point.Set(0, 0, lasttri->surface, 0);
coldist = dist;
registeredCol = true;
}else
registeredCol = false;
}else
registeredCol = false;
if(registeredCol){
TempStoredPoly.verts[0] = model.vertices[lasttri->a].Get();
TempStoredPoly.verts[1] = model.vertices[lasttri->b].Get();
TempStoredPoly.verts[2] = model.vertices[lasttri->c].Get();
TempStoredPoly.valid = true;
}
LineToTriangleCollisionCompressed(newline[0], newline[1], vutri);
lasttri = tri;
}
if(lasttri && GetVUresult(pnt, normal, dist)){
if(dist < coldist){
point.point = pnt;
point.normal = normal;
point.Set(0, 0, lasttri->surface, 0);
coldist = dist;
registeredCol = true;
}else
registeredCol = false;
}else
registeredCol = false;
if(registeredCol){
TempStoredPoly.verts[0] = model.vertices[lasttri->a].Get();
TempStoredPoly.verts[1] = model.vertices[lasttri->b].Get();
TempStoredPoly.verts[2] = model.vertices[lasttri->c].Get();
TempStoredPoly.valid = true;
}
}
if(coldist < 1.0f){
point.point = matrix * point.point;
point.normal = Multiply3x3(matrix, point.normal);
if(TempStoredPoly.valid && poly){
*poly = TempStoredPoly;
poly->verts[0] = matrix * CVector(poly->verts[0]);
poly->verts[1] = matrix * CVector(poly->verts[1]);
poly->verts[2] = matrix * CVector(poly->verts[2]);
}
mindist *= coldist;
return true;
}
return false;
#else
static CStoredCollPoly TempStoredPoly;
int i;
// transform line to model space
// Why does the game seem to do this differently than above?
CColLine newline(MultiplyInverse(matrix, line.p0), MultiplyInverse(matrix, line.p1));
if(!TestLineBox(newline, model.boundingBox))
return false;
// BUG? is IsSeeThroughVertical really the right thing? also not checking shoot through
float coldist = mindist;
for(i = 0; i < model.numSpheres; i++){
if(ignoreSeeThrough && IsSeeThroughVertical(model.spheres[i].surface)) continue;
ProcessLineSphere(newline, model.spheres[i], point, coldist);
}
for(i = 0; i < model.numBoxes; i++){
if(ignoreSeeThrough && IsSeeThroughVertical(model.boxes[i].surface)) continue;
ProcessLineBox(newline, model.boxes[i], point, coldist);
}
CalculateTrianglePlanes(&model);
TempStoredPoly.valid = false;
for(i = 0; i < model.numTriangles; i++){
if(ignoreSeeThrough && IsSeeThroughVertical(model.triangles[i].surface)) continue;
ProcessLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i], point, coldist, &TempStoredPoly);
}
if(coldist < mindist){
point.point = matrix * point.point;
point.normal = Multiply3x3(matrix, point.normal);
if(TempStoredPoly.valid && poly){
*poly = TempStoredPoly;
poly->verts[0] = matrix * poly->verts[0];
poly->verts[1] = matrix * poly->verts[1];
poly->verts[2] = matrix * poly->verts[2];
}
mindist = coldist;
return true;
}
return false;
#endif
}
enum {
MAXNUMSPHERES = 128,
MAXNUMBOXES = 32,
MAXNUMLINES = 16,
MAXNUMTRIS = 600
};
#ifdef VU_COLLISION
#ifdef GTA_PS2
#define SPR(off) ((uint8*)(0x70000000 + (off)))
#else
static uint8 fakeSPR[16*1024];
#define SPR(off) ((uint8*)(fakeSPR + (off)))
#endif
#endif
// This checks model A's spheres and lines against model B's spheres, boxes and triangles.
// Returns the number of A's spheres that collide.
// Returned ColPoints are in world space.
// NB: only vehicles can have col models with lines, exactly 4, one for each wheel
int32
CCollision::ProcessColModels(const CMatrix &matrixA, CColModel &modelA,
const CMatrix &matrixB, CColModel &modelB,
CColPoint *spherepoints, CColPoint *linepoints, float *linedists)
{
#ifdef VU_COLLISION
CVuVector *aSpheresA = (CVuVector*)SPR(0x0000);
CVuVector *aSpheresB = (CVuVector*)SPR(0x0800);
CVuVector *aLinesA = (CVuVector*)SPR(0x1000);
int32 *aSphereIndicesA = (int32*)SPR(0x1200);
int32 *aSphereIndicesB = (int32*)SPR(0x1400);
int32 *aBoxIndicesB = (int32*)SPR(0x1600);
int32 *aTriangleIndicesB = (int32*)SPR(0x1680);
bool *aCollided = (bool*)SPR(0x1FE0);
CMatrix &matAB = *(CMatrix*)SPR(0x1FF0);
CMatrix &matBA = *(CMatrix*)SPR(0x2040);
int i, j, k;
// From model A space to model B space
Invert(matrixB, matAB);
matAB *= matrixA;
CVuVector bsphereAB; // bounding sphere of A in B space
TransformPoint(bsphereAB, matAB, *(RwV3d*)modelA.boundingSphere.center); // inlined
bsphereAB.w = modelA.boundingSphere.radius;
if(!TestSphereBox(*(CColSphere*)&bsphereAB, modelB.boundingBox))
return 0;
// transform modelA's spheres and lines to B space
TransformPoints(aSpheresA, modelA.numSpheres, matAB, (RwV3d*)&modelA.spheres->center, sizeof(CColSphere));
for(i = 0; i < modelA.numSpheres; i++)
aSpheresA[i].w = modelA.spheres[i].radius;
TransformPoints(aLinesA, modelA.numLines*2, matAB, (RwV3d*)&modelA.lines->p0, sizeof(CColLine)/2);
// Test them against model B's bounding volumes
int numSpheresA = 0;
for(i = 0; i < modelA.numSpheres; i++)
if(TestSphereBox(*(CColSphere*)&aSpheresA[i], modelB.boundingBox))
aSphereIndicesA[numSpheresA++] = i;
// No collision
if(numSpheresA == 0 && modelA.numLines == 0)
return 0;
// B to A space
Invert(matrixA, matBA);
matBA *= matrixB;
// transform modelB's spheres to A space
TransformPoints(aSpheresB, modelB.numSpheres, matBA, (RwV3d*)&modelB.spheres->center, sizeof(CColSphere));
for(i = 0; i < modelB.numSpheres; i++)
aSpheresB[i].w = modelB.spheres[i].radius;
// Check model B against A's bounding volumes
int numSpheresB = 0;
int numBoxesB = 0;
int numTrianglesB = 0;
for(i = 0; i < modelB.numSpheres; i++)
if(TestSphereBox(*(CColSphere*)&aSpheresB[i], modelA.boundingBox))
aSphereIndicesB[numSpheresB++] = i;
for(i = 0; i < modelB.numBoxes; i++)
if(TestSphereBox(*(CColSphere*)&bsphereAB, modelB.boxes[i]))
aBoxIndicesB[numBoxesB++] = i;
CalculateTrianglePlanes(&modelB);
if(modelB.numTriangles){
VuTriangle vutri;
// process the first triangle
CColTriangle *tri = &modelB.triangles[0];
modelB.vertices[tri->a].Unpack(vutri.v0);
modelB.vertices[tri->b].Unpack(vutri.v1);
modelB.vertices[tri->c].Unpack(vutri.v2);
modelB.trianglePlanes[0].Unpack(vutri.plane);
SphereToTriangleCollisionCompressed(bsphereAB, vutri);
for(i = 1; i < modelB.numTriangles; i++){
// set up the next triangle while VU0 is running
tri = &modelB.triangles[i];
modelB.vertices[tri->a].Unpack(vutri.v0);
modelB.vertices[tri->b].Unpack(vutri.v1);
modelB.vertices[tri->c].Unpack(vutri.v2);
modelB.trianglePlanes[i].Unpack(vutri.plane);
// check previous result
if(GetVUresult())
aTriangleIndicesB[numTrianglesB++] = i-1;
// kick off this one
SphereToTriangleCollisionCompressed(bsphereAB, vutri);
}
// check last result
if(GetVUresult())
aTriangleIndicesB[numTrianglesB++] = i-1;
}
// No collision
if(numSpheresB == 0 && numBoxesB == 0 && numTrianglesB == 0)
return 0;
// We now have the collision volumes in A and B that are worth processing.
// Process A's spheres against B's collision volumes
int numCollisions = 0;
spherepoints[numCollisions].depth = -1.0f;
for(i = 0; i < numSpheresA; i++){
float coldist = 1.0e24f;
bool hasCollided = false;
CColSphere *sphA = &modelA.spheres[aSphereIndicesA[i]];
CVuVector *vusphA = &aSpheresA[aSphereIndicesA[i]];
for(j = 0; j < numSpheresB; j++)
// This actually looks like something was inlined here
if(ProcessSphereSphere(*(CColSphere*)vusphA, modelB.spheres[aSphereIndicesB[j]],
spherepoints[numCollisions], coldist)){
spherepoints[numCollisions].Set(
sphA->surface, sphA->piece,
modelB.spheres[aSphereIndicesB[j]].surface, modelB.spheres[aSphereIndicesB[j]].piece);
hasCollided = true;
}
for(j = 0; j < numBoxesB; j++)
if(ProcessSphereBox(*(CColSphere*)vusphA, modelB.boxes[aBoxIndicesB[j]],
spherepoints[numCollisions], coldist)){
spherepoints[numCollisions].Set(
sphA->surface, sphA->piece,
modelB.boxes[aBoxIndicesB[j]].surface, modelB.boxes[aBoxIndicesB[j]].piece);
hasCollided = true;
}
if(numTrianglesB){
CVuVector point, normal;
float depth;
bool registeredCol;
CColTriangle *lasttri;
VuTriangle vutri;
// process the first triangle
k = aTriangleIndicesB[0];
CColTriangle *tri = &modelB.triangles[k];
modelB.vertices[tri->a].Unpack(vutri.v0);
modelB.vertices[tri->b].Unpack(vutri.v1);
modelB.vertices[tri->c].Unpack(vutri.v2);
modelB.trianglePlanes[k].Unpack(vutri.plane);
SphereToTriangleCollisionCompressed(*vusphA, vutri);
lasttri = tri;
for(j = 1; j < numTrianglesB; j++){
k = aTriangleIndicesB[j];
// set up the next triangle while VU0 is running
tri = &modelB.triangles[k];
modelB.vertices[tri->a].Unpack(vutri.v0);
modelB.vertices[tri->b].Unpack(vutri.v1);
modelB.vertices[tri->c].Unpack(vutri.v2);
modelB.trianglePlanes[k].Unpack(vutri.plane);
// check previous result
// TODO: this looks inlined but spherepoints[numCollisions] does not...
if(GetVUresult(point, normal, depth)){
depth = sphA->radius - depth;
if(depth > spherepoints[numCollisions].depth){
spherepoints[numCollisions].point = point;
spherepoints[numCollisions].normal = normal;
spherepoints[numCollisions].Set(depth,
sphA->surface, sphA->piece, lasttri->surface, 0);
registeredCol = true;
}else
registeredCol = false;
}else
registeredCol = false;
if(registeredCol)
hasCollided = true;
// kick off this one
SphereToTriangleCollisionCompressed(*vusphA, vutri);
lasttri = tri;
}
// check last result
// TODO: this looks inlined but spherepoints[numCollisions] does not...
if(GetVUresult(point, normal, depth)){
depth = sphA->radius - depth;
if(depth > spherepoints[numCollisions].depth){
spherepoints[numCollisions].point = point;
spherepoints[numCollisions].normal = normal;
spherepoints[numCollisions].Set(depth,
sphA->surface, sphA->piece, lasttri->surface, 0);
registeredCol = true;
}else
registeredCol = false;
}else
registeredCol = false;
if(registeredCol)
hasCollided = true;
}
if(hasCollided){
numCollisions++;
if(numCollisions == MAX_COLLISION_POINTS)
break;
spherepoints[numCollisions].depth = -1.0f;
}
}
for(i = 0; i < numCollisions; i++){
// TODO: both VU0 macros
spherepoints[i].point = matrixB * spherepoints[i].point;
spherepoints[i].normal = Multiply3x3(matrixB, spherepoints[i].normal);
}
// And the same thing for the lines in A
for(i = 0; i < modelA.numLines; i++){
aCollided[i] = false;
CVuVector *lineA = &aLinesA[i*2];
for(j = 0; j < numSpheresB; j++)
if(ProcessLineSphere(*(CColLine*)lineA, modelB.spheres[aSphereIndicesB[j]],
linepoints[i], linedists[i])){
linepoints[i].Set(0, 0,
#ifdef FIX_BUGS
modelB.spheres[aSphereIndicesB[j]].surface, modelB.spheres[aSphereIndicesB[j]].piece);
#else
modelB.spheres[j].surface, modelB.spheres[j].piece);
#endif
aCollided[i] = true;
}
for(j = 0; j < numBoxesB; j++)
if(ProcessLineBox(*(CColLine*)lineA, modelB.boxes[aBoxIndicesB[j]],
linepoints[i], linedists[i])){
linepoints[i].Set(0, 0,
modelB.boxes[aBoxIndicesB[j]].surface, modelB.boxes[aBoxIndicesB[j]].piece);
aCollided[i] = true;
}
if(numTrianglesB){
CVuVector point, normal;
float dist;
bool registeredCol;
CColTriangle *lasttri;
VuTriangle vutri;
// process the first triangle
k = aTriangleIndicesB[0];
CColTriangle *tri = &modelB.triangles[k];
modelB.vertices[tri->a].Unpack(vutri.v0);
modelB.vertices[tri->b].Unpack(vutri.v1);
modelB.vertices[tri->c].Unpack(vutri.v2);
modelB.trianglePlanes[k].Unpack(vutri.plane);
LineToTriangleCollisionCompressed(lineA[0], lineA[1], vutri);
lasttri = tri;
for(j = 1; j < numTrianglesB; j++){
k = aTriangleIndicesB[j];
// set up the next triangle while VU0 is running
CColTriangle *tri = &modelB.triangles[k];
modelB.vertices[tri->a].Unpack(vutri.v0);
modelB.vertices[tri->b].Unpack(vutri.v1);
modelB.vertices[tri->c].Unpack(vutri.v2);
modelB.trianglePlanes[k].Unpack(vutri.plane);
// check previous result
// TODO: this again somewhat looks inlined
if(GetVUresult(point, normal, dist)){
if(dist < linedists[i]){
linepoints[i].point = point;
linepoints[i].normal = normal;
linedists[i] = dist;
linepoints[i].Set(0, 0, lasttri->surface, 0);
registeredCol = true;
}else
registeredCol = false;
}else
registeredCol = false;
if(registeredCol)
aCollided[i] = true;
// kick of this one
LineToTriangleCollisionCompressed(lineA[0], lineA[1], vutri);
lasttri = tri;
}
// check last result
if(GetVUresult(point, normal, dist)){
if(dist < linedists[i]){
linepoints[i].point = point;
linepoints[i].normal = normal;
linedists[i] = dist;
linepoints[i].Set(0, 0, lasttri->surface, 0);
registeredCol = true;
}else
registeredCol = false;
}else
registeredCol = false;
if(registeredCol)
aCollided[i] = true;
}
if(aCollided[i]){
// TODO: both VU0 macros
linepoints[i].point = matrixB * linepoints[i].point;
linepoints[i].normal = Multiply3x3(matrixB, linepoints[i].normal);
}
}
return numCollisions; // sphere collisions
#else
static int aSphereIndicesA[MAXNUMSPHERES];
static int aLineIndicesA[MAXNUMLINES];
static int aSphereIndicesB[MAXNUMSPHERES];
static int aBoxIndicesB[MAXNUMBOXES];
static int aTriangleIndicesB[MAXNUMTRIS];
static bool aCollided[MAXNUMLINES];
static CColSphere aSpheresA[MAXNUMSPHERES];
static CColLine aLinesA[MAXNUMLINES];
static CMatrix matAB, matBA;
CColSphere s;
int i, j;
assert(modelA.numSpheres <= MAXNUMSPHERES);
assert(modelA.numLines <= MAXNUMLINES);
// From model A space to model B space
Invert(matrixB, matAB);
matAB *= matrixA;
CColSphere bsphereAB; // bounding sphere of A in B space
bsphereAB.Set(modelA.boundingSphere.radius, matAB * modelA.boundingSphere.center);
if(!TestSphereBox(bsphereAB, modelB.boundingBox))
return 0;
// B to A space
matBA = Invert(matrixA, matBA);
matBA *= matrixB;
// transform modelA's spheres and lines to B space
for(i = 0; i < modelA.numSpheres; i++){
CColSphere &s = modelA.spheres[i];
aSpheresA[i].Set(s.radius, matAB * s.center, s.surface, s.piece);
}
for(i = 0; i < modelA.numLines; i++)
aLinesA[i].Set(matAB * modelA.lines[i].p0, matAB * modelA.lines[i].p1);
// Test them against model B's bounding volumes
int numSpheresA = 0;
int numLinesA = 0;
for(i = 0; i < modelA.numSpheres; i++)
if(TestSphereBox(aSpheresA[i], modelB.boundingBox))
aSphereIndicesA[numSpheresA++] = i;
// no actual check???
for(i = 0; i < modelA.numLines; i++)
aLineIndicesA[numLinesA++] = i;
// No collision
if(numSpheresA == 0 && numLinesA == 0)
return 0;
// Check model B against A's bounding volumes
int numSpheresB = 0;
int numBoxesB = 0;
int numTrianglesB = 0;
for(i = 0; i < modelB.numSpheres; i++){
s.Set(modelB.spheres[i].radius, matBA * modelB.spheres[i].center);
if(TestSphereBox(s, modelA.boundingBox))
aSphereIndicesB[numSpheresB++] = i;
}
for(i = 0; i < modelB.numBoxes; i++)
if(TestSphereBox(bsphereAB, modelB.boxes[i]))
aBoxIndicesB[numBoxesB++] = i;
CalculateTrianglePlanes(&modelB);
for(i = 0; i < modelB.numTriangles; i++)
if(TestSphereTriangle(bsphereAB, modelB.vertices, modelB.triangles[i], modelB.trianglePlanes[i]))
aTriangleIndicesB[numTrianglesB++] = i;
assert(numSpheresB <= MAXNUMSPHERES);
assert(numBoxesB <= MAXNUMBOXES);
assert(numTrianglesB <= MAXNUMTRIS);
// No collision
if(numSpheresB == 0 && numBoxesB == 0 && numTrianglesB == 0)
return 0;
// We now have the collision volumes in A and B that are worth processing.
// Process A's spheres against B's collision volumes
int numCollisions = 0;
for(i = 0; i < numSpheresA; i++){
float coldist = 1.0e24f;
bool hasCollided = false;
for(j = 0; j < numSpheresB; j++)
hasCollided |= ProcessSphereSphere(
aSpheresA[aSphereIndicesA[i]],
modelB.spheres[aSphereIndicesB[j]],
spherepoints[numCollisions], coldist);
for(j = 0; j < numBoxesB; j++)
hasCollided |= ProcessSphereBox(
aSpheresA[aSphereIndicesA[i]],
modelB.boxes[aBoxIndicesB[j]],
spherepoints[numCollisions], coldist);
for(j = 0; j < numTrianglesB; j++)
hasCollided |= ProcessSphereTriangle(
aSpheresA[aSphereIndicesA[i]],
modelB.vertices,
modelB.triangles[aTriangleIndicesB[j]],
modelB.trianglePlanes[aTriangleIndicesB[j]],
spherepoints[numCollisions], coldist);
if(hasCollided)
numCollisions++;
}
for(i = 0; i < numCollisions; i++){
spherepoints[i].point = matrixB * spherepoints[i].point;
spherepoints[i].normal = Multiply3x3(matrixB, spherepoints[i].normal);
}
// And the same thing for the lines in A
for(i = 0; i < numLinesA; i++){
aCollided[i] = false;
for(j = 0; j < numSpheresB; j++)
aCollided[i] |= ProcessLineSphere(
aLinesA[aLineIndicesA[i]],
modelB.spheres[aSphereIndicesB[j]],
linepoints[aLineIndicesA[i]],
linedists[aLineIndicesA[i]]);
for(j = 0; j < numBoxesB; j++)
aCollided[i] |= ProcessLineBox(
aLinesA[aLineIndicesA[i]],
modelB.boxes[aBoxIndicesB[j]],
linepoints[aLineIndicesA[i]],
linedists[aLineIndicesA[i]]);
for(j = 0; j < numTrianglesB; j++)
aCollided[i] |= ProcessLineTriangle(
aLinesA[aLineIndicesA[i]],
modelB.vertices,
modelB.triangles[aTriangleIndicesB[j]],
modelB.trianglePlanes[aTriangleIndicesB[j]],
linepoints[aLineIndicesA[i]],
linedists[aLineIndicesA[i]]);
}
for(i = 0; i < numLinesA; i++)
if(aCollided[i]){
j = aLineIndicesA[i];
linepoints[j].point = matrixB * linepoints[j].point;
linepoints[j].normal = Multiply3x3(matrixB, linepoints[j].normal);
}
return numCollisions; // sphere collisions
#endif
}
//
// Misc
//
float
CCollision::DistToLine(const CVector *l0, const CVector *l1, const CVector *point)
{
float lensq = (*l1 - *l0).MagnitudeSqr();
float dot = DotProduct(*point - *l0, *l1 - *l0);
// Between 0 and len we're above the line.
// if not, calculate distance to endpoint
if(dot <= 0.0f)
return (*point - *l0).Magnitude();
if(dot >= lensq)
return (*point - *l1).Magnitude();
// distance to line
return Sqrt((*point - *l0).MagnitudeSqr() - dot*dot/lensq);
}
// same as above but also return the point on the line
float
CCollision::DistToLine(const CVector *l0, const CVector *l1, const CVector *point, CVector &closest)
{
float lensq = (*l1 - *l0).MagnitudeSqr();
float dot = DotProduct(*point - *l0, *l1 - *l0);
// find out which point we're closest to
if(dot <= 0.0f)
closest = *l0;
else if(dot >= lensq)
closest = *l1;
else
closest = *l0 + (*l1 - *l0)*(dot/lensq);
// this is the distance
return (*point - closest).Magnitude();
}
void
CCollision::CalculateTrianglePlanes(CColModel *model)
{
assert(model);
if(model->numTriangles == 0)
return;
CLink<CColModel*> *lptr;
if(model->trianglePlanes){
// re-insert at front so it's not removed again soon
lptr = model->GetLinkPtr();
lptr->Remove();
ms_colModelCache.head.Insert(lptr);
}else{
lptr = ms_colModelCache.Insert(model);
if(lptr == nil){
// make room if we have to, remove last in list
lptr = ms_colModelCache.tail.prev;
assert(lptr);
assert(lptr->item);
lptr->item->RemoveTrianglePlanes();
ms_colModelCache.Remove(lptr);
// now this cannot fail
lptr = ms_colModelCache.Insert(model);
assert(lptr);
}
model->CalculateTrianglePlanes();
model->SetLinkPtr(lptr);
}
}
void
CCollision::RemoveTrianglePlanes(CColModel *model)
{
if(model->trianglePlanes){
ms_colModelCache.Remove(model->GetLinkPtr());
model->RemoveTrianglePlanes();
}
}
void
CCollision::DrawColModel(const CMatrix &mat, const CColModel &colModel)
{
int i;
CVector min, max;
CVector verts[8];
CVector c;
float r;
RwRenderStateSet(rwRENDERSTATEZWRITEENABLE, (void*)TRUE);
RwRenderStateSet(rwRENDERSTATEVERTEXALPHAENABLE, (void*)TRUE);
RwRenderStateSet(rwRENDERSTATESRCBLEND, (void*)rwBLENDSRCALPHA);
RwRenderStateSet(rwRENDERSTATEDESTBLEND, (void*)rwBLENDINVSRCALPHA);
RwRenderStateSet(rwRENDERSTATETEXTURERASTER, nil);
min = colModel.boundingBox.min;
max = colModel.boundingBox.max;
verts[0] = mat * CVector(min.x, min.y, min.z);
verts[1] = mat * CVector(min.x, min.y, max.z);
verts[2] = mat * CVector(min.x, max.y, min.z);
verts[3] = mat * CVector(min.x, max.y, max.z);
verts[4] = mat * CVector(max.x, min.y, min.z);
verts[5] = mat * CVector(max.x, min.y, max.z);
verts[6] = mat * CVector(max.x, max.y, min.z);
verts[7] = mat * CVector(max.x, max.y, max.z);
CLines::RenderLineWithClipping(
verts[0].x, verts[0].y, verts[0].z,
verts[1].x, verts[1].y, verts[1].z,
0xFF0000FF, 0xFF0000FF);
CLines::RenderLineWithClipping(
verts[1].x, verts[1].y, verts[1].z,
verts[3].x, verts[3].y, verts[3].z,
0xFF0000FF, 0xFF0000FF);
CLines::RenderLineWithClipping(
verts[3].x, verts[3].y, verts[3].z,
verts[2].x, verts[2].y, verts[2].z,
0xFF0000FF, 0xFF0000FF);
CLines::RenderLineWithClipping(
verts[2].x, verts[2].y, verts[2].z,
verts[0].x, verts[0].y, verts[0].z,
0xFF0000FF, 0xFF0000FF);
CLines::RenderLineWithClipping(
verts[4].x, verts[4].y, verts[4].z,
verts[5].x, verts[5].y, verts[5].z,
0xFF0000FF, 0xFF0000FF);
CLines::RenderLineWithClipping(
verts[5].x, verts[5].y, verts[5].z,
verts[7].x, verts[7].y, verts[7].z,
0xFF0000FF, 0xFF0000FF);
CLines::RenderLineWithClipping(
verts[7].x, verts[7].y, verts[7].z,
verts[6].x, verts[6].y, verts[6].z,
0xFF0000FF, 0xFF0000FF);
CLines::RenderLineWithClipping(
verts[6].x, verts[6].y, verts[6].z,
verts[4].x, verts[4].y, verts[4].z,
0xFF0000FF, 0xFF0000FF);
CLines::RenderLineWithClipping(
verts[0].x, verts[0].y, verts[0].z,
verts[4].x, verts[4].y, verts[4].z,
0xFF0000FF, 0xFF0000FF);
CLines::RenderLineWithClipping(
verts[1].x, verts[1].y, verts[1].z,
verts[5].x, verts[5].y, verts[5].z,
0xFF0000FF, 0xFF0000FF);
CLines::RenderLineWithClipping(
verts[2].x, verts[2].y, verts[2].z,
verts[6].x, verts[6].y, verts[6].z,
0xFF0000FF, 0xFF0000FF);
CLines::RenderLineWithClipping(
verts[3].x, verts[3].y, verts[3].z,
verts[7].x, verts[7].y, verts[7].z,
0xFF0000FF, 0xFF0000FF);
for(i = 0; i < colModel.numSpheres; i++){
c = mat * colModel.spheres[i].center;
r = colModel.spheres[i].radius;
CLines::RenderLineWithClipping(
c.x, c.y, c.z-r,
c.x-r, c.y-r, c.z,
0xFF00FFFF, 0xFF00FFFF);
CLines::RenderLineWithClipping(
c.x, c.y, c.z-r,
c.x-r, c.y+r, c.z,
0xFF00FFFF, 0xFF00FFFF);
CLines::RenderLineWithClipping(
c.x, c.y, c.z-r,
c.x+r, c.y-r, c.z,
0xFF00FFFF, 0xFF00FFFF);
CLines::RenderLineWithClipping(
c.x, c.y, c.z-r,
c.x+r, c.y+r, c.z,
0xFF00FFFF, 0xFF00FFFF);
CLines::RenderLineWithClipping(
c.x-r, c.y-r, c.z,
c.x, c.y, c.z+r,
0xFF00FFFF, 0xFF00FFFF);
CLines::RenderLineWithClipping(
c.x-r, c.y+r, c.z,
c.x, c.y, c.z+r,
0xFF00FFFF, 0xFF00FFFF);
CLines::RenderLineWithClipping(
c.x+r, c.y-r, c.z,
c.x, c.y, c.z+r,
0xFF00FFFF, 0xFF00FFFF);
CLines::RenderLineWithClipping(
c.x+r, c.y+r, c.z,
c.x, c.y, c.z+r,
0xFF00FFFF, 0xFF00FFFF);
}
for(i = 0; i < colModel.numLines; i++){
verts[0] = colModel.lines[i].p0;
verts[1] = colModel.lines[i].p1;
verts[0] = mat * verts[0];
verts[1] = mat * verts[1];
CLines::RenderLineWithClipping(
verts[0].x, verts[0].y, verts[0].z,
verts[1].x, verts[1].y, verts[1].z,
0x00FFFFFF, 0x00FFFFFF);
}
for(i = 0; i < colModel.numBoxes; i++){
min = colModel.boxes[i].min;
max = colModel.boxes[i].max;
verts[0] = mat * CVector(min.x, min.y, min.z);
verts[1] = mat * CVector(min.x, min.y, max.z);
verts[2] = mat * CVector(min.x, max.y, min.z);
verts[3] = mat * CVector(min.x, max.y, max.z);
verts[4] = mat * CVector(max.x, min.y, min.z);
verts[5] = mat * CVector(max.x, min.y, max.z);
verts[6] = mat * CVector(max.x, max.y, min.z);
verts[7] = mat * CVector(max.x, max.y, max.z);
CLines::RenderLineWithClipping(
verts[0].x, verts[0].y, verts[0].z,
verts[1].x, verts[1].y, verts[1].z,
0xFFFFFFFF, 0xFFFFFFFF);
CLines::RenderLineWithClipping(
verts[1].x, verts[1].y, verts[1].z,
verts[3].x, verts[3].y, verts[3].z,
0xFFFFFFFF, 0xFFFFFFFF);
CLines::RenderLineWithClipping(
verts[3].x, verts[3].y, verts[3].z,
verts[2].x, verts[2].y, verts[2].z,
0xFFFFFFFF, 0xFFFFFFFF);
CLines::RenderLineWithClipping(
verts[2].x, verts[2].y, verts[2].z,
verts[0].x, verts[0].y, verts[0].z,
0xFFFFFFFF, 0xFFFFFFFF);
CLines::RenderLineWithClipping(
verts[4].x, verts[4].y, verts[4].z,
verts[5].x, verts[5].y, verts[5].z,
0xFFFFFFFF, 0xFFFFFFFF);
CLines::RenderLineWithClipping(
verts[5].x, verts[5].y, verts[5].z,
verts[7].x, verts[7].y, verts[7].z,
0xFFFFFFFF, 0xFFFFFFFF);
CLines::RenderLineWithClipping(
verts[7].x, verts[7].y, verts[7].z,
verts[6].x, verts[6].y, verts[6].z,
0xFFFFFFFF, 0xFFFFFFFF);
CLines::RenderLineWithClipping(
verts[6].x, verts[6].y, verts[6].z,
verts[4].x, verts[4].y, verts[4].z,
0xFFFFFFFF, 0xFFFFFFFF);
CLines::RenderLineWithClipping(
verts[0].x, verts[0].y, verts[0].z,
verts[4].x, verts[4].y, verts[4].z,
0xFFFFFFFF, 0xFFFFFFFF);
CLines::RenderLineWithClipping(
verts[1].x, verts[1].y, verts[1].z,
verts[5].x, verts[5].y, verts[5].z,
0xFFFFFFFF, 0xFFFFFFFF);
CLines::RenderLineWithClipping(
verts[2].x, verts[2].y, verts[2].z,
verts[6].x, verts[6].y, verts[6].z,
0xFFFFFFFF, 0xFFFFFFFF);
CLines::RenderLineWithClipping(
verts[3].x, verts[3].y, verts[3].z,
verts[7].x, verts[7].y, verts[7].z,
0xFFFFFFFF, 0xFFFFFFFF);
}
for(i = 0; i < colModel.numTriangles; i++){
colModel.GetTrianglePoint(verts[0], colModel.triangles[i].a);
colModel.GetTrianglePoint(verts[1], colModel.triangles[i].b);
colModel.GetTrianglePoint(verts[2], colModel.triangles[i].c);
verts[0] = mat * verts[0];
verts[1] = mat * verts[1];
verts[2] = mat * verts[2];
CLines::RenderLineWithClipping(
verts[0].x, verts[0].y, verts[0].z,
verts[1].x, verts[1].y, verts[1].z,
0x00FF00FF, 0x00FF00FF);
CLines::RenderLineWithClipping(
verts[0].x, verts[0].y, verts[0].z,
verts[2].x, verts[2].y, verts[2].z,
0x00FF00FF, 0x00FF00FF);
CLines::RenderLineWithClipping(
verts[1].x, verts[1].y, verts[1].z,
verts[2].x, verts[2].y, verts[2].z,
0x00FF00FF, 0x00FF00FF);
}
RwRenderStateSet(rwRENDERSTATESRCBLEND, (void*)rwBLENDSRCALPHA);
RwRenderStateSet(rwRENDERSTATEDESTBLEND, (void*)rwBLENDINVSRCALPHA);
RwRenderStateSet(rwRENDERSTATEVERTEXALPHAENABLE, (void*)FALSE);
RwRenderStateSet(rwRENDERSTATEZWRITEENABLE, (void*)TRUE);
RwRenderStateSet(rwRENDERSTATEZTESTENABLE, (void*)TRUE);
}
static void
GetSurfaceColor(uint8 surf, uint8 &r, uint8 &g, uint8 &b)
{
// game doesn't do this
r = 255;
g = 128;
b = 0;
switch(CSurfaceTable::GetAdhesionGroup(surf)){
case ADHESIVE_RUBBER:
r = 255;
g = 0;
b = 0;
break;
case ADHESIVE_HARD:
r = 255;
g = 255;
b = 128;
break;
case ADHESIVE_ROAD:
r = 128;
g = 128;
b = 128;
break;
case ADHESIVE_LOOSE:
r = 0;
g = 255;
b = 0;
break;
case ADHESIVE_SAND:
r = 255;
g = 128;
b = 128;
break;
case ADHESIVE_WET:
r = 0;
g = 0;
b = 255;
break;
}
if(surf == SURFACE_SAND || surf == SURFACE_SAND_BEACH){
r = 255;
g = 255;
b = 0;
}
float f = (surf & 0xF)/32.0f + 0.5f;
r *= f;
g *= f;
b *= f;
if(surf == SURFACE_TRANSPARENT_CLOTH || surf == SURFACE_METAL_CHAIN_FENCE ||
surf == SURFACE_TRANSPARENT_STONE || surf == SURFACE_SCAFFOLD_POLE)
if(CTimer::GetFrameCounter() & 1){
r = 0;
g = 0;
b = 0;
}
}
void
CCollision::DrawColModel_Coloured(const CMatrix &mat, const CColModel &colModel, int32 id)
{
int i;
int s;
CVector verts[8];
CVector min, max;
uint8 r, g, b;
RwImVertexIndex *iptr;
RwIm3DVertex *vptr;
RenderBuffer::ClearRenderBuffer();
RwRenderStateSet(rwRENDERSTATEZWRITEENABLE, (void*)TRUE);
RwRenderStateSet(rwRENDERSTATEVERTEXALPHAENABLE, (void*)TRUE);
RwRenderStateSet(rwRENDERSTATESRCBLEND, (void*)rwBLENDSRCALPHA);
RwRenderStateSet(rwRENDERSTATEDESTBLEND, (void*)rwBLENDINVSRCALPHA);
RwRenderStateSet(rwRENDERSTATETEXTURERASTER, nil);
for(i = 0; i < colModel.numTriangles; i++){
colModel.GetTrianglePoint(verts[0], colModel.triangles[i].a);
colModel.GetTrianglePoint(verts[1], colModel.triangles[i].b);
colModel.GetTrianglePoint(verts[2], colModel.triangles[i].c);
verts[0] = mat * verts[0];
verts[1] = mat * verts[1];
verts[2] = mat * verts[2];
s = colModel.triangles[i].surface;
GetSurfaceColor(s, r, g, b);
if(s > SURFACE_METAL_GATE){
r = CGeneral::GetRandomNumber();
g = CGeneral::GetRandomNumber();
b = CGeneral::GetRandomNumber();
printf("Illegal surfacetype:%d on MI:%d\n", s, id);
}
RenderBuffer::StartStoring(6, 3, &iptr, &vptr);
RwIm3DVertexSetRGBA(&vptr[0], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[1], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[2], r, g, b, 255);
RwIm3DVertexSetU(&vptr[0], 0.0f);
RwIm3DVertexSetV(&vptr[0], 0.0f);
RwIm3DVertexSetU(&vptr[1], 0.0f);
RwIm3DVertexSetV(&vptr[1], 1.0f);
RwIm3DVertexSetU(&vptr[2], 1.0f);
RwIm3DVertexSetV(&vptr[2], 1.0f);
RwIm3DVertexSetPos(&vptr[0], verts[0].x, verts[0].y, verts[0].z);
RwIm3DVertexSetPos(&vptr[1], verts[1].x, verts[1].y, verts[1].z);
RwIm3DVertexSetPos(&vptr[2], verts[2].x, verts[2].y, verts[2].z);
iptr[0] = 0; iptr[1] = 1; iptr[2] = 2;
iptr[3] = 0; iptr[4] = 2; iptr[5] = 1;
RenderBuffer::StopStoring();
}
for(i = 0; i < colModel.numBoxes; i++){
min = colModel.boxes[i].min;
max = colModel.boxes[i].max;
verts[0] = mat * CVector(min.x, min.y, min.z);
verts[1] = mat * CVector(min.x, min.y, max.z);
verts[2] = mat * CVector(min.x, max.y, min.z);
verts[3] = mat * CVector(min.x, max.y, max.z);
verts[4] = mat * CVector(max.x, min.y, min.z);
verts[5] = mat * CVector(max.x, min.y, max.z);
verts[6] = mat * CVector(max.x, max.y, min.z);
verts[7] = mat * CVector(max.x, max.y, max.z);
s = colModel.boxes[i].surface;
GetSurfaceColor(s, r, g, b);
RenderBuffer::StartStoring(36, 8, &iptr, &vptr);
RwIm3DVertexSetRGBA(&vptr[0], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[1], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[2], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[3], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[4], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[5], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[6], r, g, b, 255);
RwIm3DVertexSetRGBA(&vptr[7], r, g, b, 255);
RwIm3DVertexSetU(&vptr[0], 0.0f);
RwIm3DVertexSetV(&vptr[0], 0.0f);
RwIm3DVertexSetU(&vptr[1], 0.0f);
RwIm3DVertexSetV(&vptr[1], 1.0f);
RwIm3DVertexSetU(&vptr[2], 1.0f);
RwIm3DVertexSetV(&vptr[2], 1.0f);
RwIm3DVertexSetU(&vptr[3], 0.0f);
RwIm3DVertexSetV(&vptr[3], 0.0f);
RwIm3DVertexSetU(&vptr[4], 0.0f);
RwIm3DVertexSetV(&vptr[4], 1.0f);
RwIm3DVertexSetU(&vptr[5], 1.0f);
RwIm3DVertexSetV(&vptr[5], 1.0f);
RwIm3DVertexSetU(&vptr[6], 0.0f);
RwIm3DVertexSetV(&vptr[6], 1.0f);
RwIm3DVertexSetU(&vptr[7], 1.0f);
RwIm3DVertexSetV(&vptr[7], 1.0f);
RwIm3DVertexSetPos(&vptr[0], verts[0].x, verts[0].y, verts[0].z);
RwIm3DVertexSetPos(&vptr[1], verts[1].x, verts[1].y, verts[1].z);
RwIm3DVertexSetPos(&vptr[2], verts[2].x, verts[2].y, verts[2].z);
RwIm3DVertexSetPos(&vptr[3], verts[3].x, verts[3].y, verts[3].z);
RwIm3DVertexSetPos(&vptr[4], verts[4].x, verts[4].y, verts[4].z);
RwIm3DVertexSetPos(&vptr[5], verts[5].x, verts[5].y, verts[5].z);
RwIm3DVertexSetPos(&vptr[6], verts[6].x, verts[6].y, verts[6].z);
RwIm3DVertexSetPos(&vptr[7], verts[7].x, verts[7].y, verts[7].z);
iptr[0] = 0; iptr[1] = 1; iptr[2] = 2;
iptr[3] = 1; iptr[4] = 3; iptr[5] = 2;
iptr[6] = 1; iptr[7] = 5; iptr[8] = 7;
iptr[9] = 1; iptr[10] = 7; iptr[11] = 3;
iptr[12] = 2; iptr[13] = 3; iptr[14] = 7;
iptr[15] = 2; iptr[16] = 7; iptr[17] = 6;
iptr[18] = 0; iptr[19] = 5; iptr[20] = 1;
iptr[21] = 0; iptr[22] = 4; iptr[23] = 5;
iptr[24] = 0; iptr[25] = 2; iptr[26] = 4;
iptr[27] = 2; iptr[28] = 6; iptr[29] = 4;
iptr[30] = 4; iptr[31] = 6; iptr[32] = 7;
iptr[33] = 4; iptr[34] = 7; iptr[35] = 5;
RenderBuffer::StopStoring();
}
RenderBuffer::RenderStuffInBuffer();
RwRenderStateSet(rwRENDERSTATESRCBLEND, (void*)rwBLENDSRCALPHA);
RwRenderStateSet(rwRENDERSTATEDESTBLEND, (void*)rwBLENDINVSRCALPHA);
RwRenderStateSet(rwRENDERSTATEVERTEXALPHAENABLE, (void*)FALSE);
RwRenderStateSet(rwRENDERSTATEZWRITEENABLE, (void*)TRUE);
RwRenderStateSet(rwRENDERSTATEZTESTENABLE, (void*)TRUE);
}
/*
* ColModel code
*/
void
CColSphere::Set(float radius, const CVector &center, uint8 surf, uint8 piece)
{
this->radius = radius;
this->center = center;
this->surface = surf;
this->piece = piece;
}
bool
CColSphere::IntersectRay(CVector const& from, CVector const& dir, CVector &entry, CVector &exit)
{
CVector distToCenter = from - center;
float distToTouchSqr = distToCenter.MagnitudeSqr() - sq(radius);
float root1, root2;
if (!CGeneral::SolveQuadratic(1.0f, DotProduct(distToCenter, dir) * 2.f, distToTouchSqr, root1, root2))
return false;
entry = from + dir * root1;
exit = from + dir * root2;
return true;
}
void
CColBox::Set(const CVector &min, const CVector &max, uint8 surf, uint8 piece)
{
this->min = min;
this->max = max;
this->surface = surf;
this->piece = piece;
}
void
CColLine::Set(const CVector &p0, const CVector &p1)
{
this->p0 = p0;
this->p1 = p1;
}
void
CColTriangle::Set(const CompressedVector *, int a, int b, int c, uint8 surf, uint8 piece)
{
this->a = a;
this->b = b;
this->c = c;
this->surface = surf;
}
#ifdef VU_COLLISION
void
CColTrianglePlane::Set(const CVector &va, const CVector &vb, const CVector &vc)
{
CVector norm = CrossProduct(vc-va, vb-va);
norm.Normalise();
float d = DotProduct(norm, va);
normal.x = norm.x*4096.0f;
normal.y = norm.y*4096.0f;
normal.z = norm.z*4096.0f;
dist = d*128.0f;
}
#else
void
CColTrianglePlane::Set(const CVector &va, const CVector &vb, const CVector &vc)
{
normal = CrossProduct(vc-va, vb-va);
normal.Normalise();
dist = DotProduct(normal, va);
CVector an(Abs(normal.x), Abs(normal.y), Abs(normal.z));
// find out largest component and its direction
if(an.x > an.y && an.x > an.z)
dir = normal.x < 0.0f ? DIR_X_NEG : DIR_X_POS;
else if(an.y > an.z)
dir = normal.y < 0.0f ? DIR_Y_NEG : DIR_Y_POS;
else
dir = normal.z < 0.0f ? DIR_Z_NEG : DIR_Z_POS;
}
#endif
CColPoint&
CColPoint::operator=(const CColPoint& other)
{
point = other.point;
normal = other.normal;
surfaceA = other.surfaceA;
pieceA = other.pieceA;
surfaceB = other.surfaceB;
pieceB = other.pieceB;
// doesn't copy depth
return *this;
}
CColModel::CColModel(void)
{
numSpheres = 0;
spheres = nil;
numLines = 0;
lines = nil;
numBoxes = 0;
boxes = nil;
numTriangles = 0;
vertices = nil;
triangles = nil;
trianglePlanes = nil;
level = 0; // generic col slot
ownsCollisionVolumes = true;
}
CColModel::~CColModel(void)
{
RemoveCollisionVolumes();
RemoveTrianglePlanes();
}
void
CColModel::RemoveCollisionVolumes(void)
{
if(ownsCollisionVolumes){
RwFree(spheres);
RwFree(lines);
RwFree(boxes);
RwFree(vertices);
RwFree(triangles);
CCollision::RemoveTrianglePlanes(this);
}
numSpheres = 0;
numLines = 0;
numBoxes = 0;
numTriangles = 0;
spheres = nil;
lines = nil;
boxes = nil;
vertices = nil;
triangles = nil;
}
void
CColModel::CalculateTrianglePlanes(void)
{
// HACK: allocate space for one more element to stuff the link pointer into
trianglePlanes = (CColTrianglePlane*)RwMalloc(sizeof(CColTrianglePlane) * (numTriangles+1));
for(int i = 0; i < numTriangles; i++)
trianglePlanes[i].Set(vertices, triangles[i]);
}
void
CColModel::RemoveTrianglePlanes(void)
{
RwFree(trianglePlanes);
trianglePlanes = nil;
}
void
CColModel::SetLinkPtr(CLink<CColModel*> *lptr)
{
assert(trianglePlanes);
*(CLink<CColModel*>**)ALIGNPTR(&trianglePlanes[numTriangles]) = lptr;
}
CLink<CColModel*>*
CColModel::GetLinkPtr(void)
{
assert(trianglePlanes);
return *(CLink<CColModel*>**)ALIGNPTR(&trianglePlanes[numTriangles]);
}
void
CColModel::GetTrianglePoint(CVector &v, int i) const
{
v = vertices[i].Get();
}
void*
CColModel::operator new(size_t){
CColModel *node = CPools::GetColModelPool()->New();
assert(node);
return node;
}
void
CColModel::operator delete(void *p, size_t){
CPools::GetColModelPool()->Delete((CColModel*)p);
}
CColModel&
CColModel::operator=(const CColModel &other)
{
int i;
int numVerts;
boundingSphere = other.boundingSphere;
boundingBox = other.boundingBox;
// copy spheres
if(other.numSpheres){
if(numSpheres != other.numSpheres){
numSpheres = other.numSpheres;
if(spheres)
RwFree(spheres);
spheres = (CColSphere*)RwMalloc(numSpheres*sizeof(CColSphere));
}
for(i = 0; i < numSpheres; i++)
spheres[i] = other.spheres[i];
}else{
numSpheres = 0;
if(spheres)
RwFree(spheres);
spheres = nil;
}
// copy lines
if(other.numLines){
if(numLines != other.numLines){
numLines = other.numLines;
if(lines)
RwFree(lines);
lines = (CColLine*)RwMalloc(numLines*sizeof(CColLine));
}
for(i = 0; i < numLines; i++)
lines[i] = other.lines[i];
}else{
numLines = 0;
if(lines)
RwFree(lines);
lines = nil;
}
// copy boxes
if(other.numBoxes){
if(numBoxes != other.numBoxes){
numBoxes = other.numBoxes;
if(boxes)
RwFree(boxes);
boxes = (CColBox*)RwMalloc(numBoxes*sizeof(CColBox));
}
for(i = 0; i < numBoxes; i++)
boxes[i] = other.boxes[i];
}else{
numBoxes = 0;
if(boxes)
RwFree(boxes);
boxes = nil;
}
// copy mesh
if(other.numTriangles){
// copy vertices
numVerts = 0;
for(i = 0; i < other.numTriangles; i++){
if(other.triangles[i].a > numVerts)
numVerts = other.triangles[i].a;
if(other.triangles[i].b > numVerts)
numVerts = other.triangles[i].b;
if(other.triangles[i].c > numVerts)
numVerts = other.triangles[i].c;
}
numVerts++;
if(vertices)
RwFree(vertices);
if(numVerts){
vertices = (CompressedVector*)RwMalloc(numVerts*sizeof(CompressedVector));
for(i = 0; i < numVerts; i++)
vertices[i] = other.vertices[i];
}
// copy triangles
if(numTriangles != other.numTriangles){
numTriangles = other.numTriangles;
if(triangles)
RwFree(triangles);
triangles = (CColTriangle*)RwMalloc(numTriangles*sizeof(CColTriangle));
}
for(i = 0; i < numTriangles; i++)
triangles[i] = other.triangles[i];
}else{
numTriangles = 0;
if(triangles)
RwFree(triangles);
triangles = nil;
if(vertices)
RwFree(vertices);
vertices = nil;
}
return *this;
}